

# **Module Catalogue**

# Master Advanced Functional Materials (FAME)

# Faculty of Mathematics, Natural Sciences, and Materials Engineering

Prüfungsordnung vom 26.02.2014

You can see the other use cases of the modules in Digicampus.

# Index by Module Groups

# 1) 1a Basics of Materials Science I

Version 2 (since WS16/17)

|          | PHM-0144: Materials Physics (6 ECTS/LP, Wahlpflicht) *5                                                       |
|----------|---------------------------------------------------------------------------------------------------------------|
|          | PHM-0110: Materials Chemistry (6 ECTS/LP, Wahlpflicht)7                                                       |
| 2)<br>Ve | 1b Basics of Materials Science II<br>ersion 1 (since SoSe15)                                                  |
|          | PHM-0117: Surfaces and Interfaces (6 ECTS/LP, Wahlpflicht) *9                                                 |
| 3)<br>∨∉ | 2 Methods in Materials Science<br>ersion 9 (since SoSe23)                                                     |
|          | PHM-0287: Method Course: Spectroscopy of Organic Semiconductors (8 ECTS/LP, Wahlpflicht) *                    |
|          | PHM-0297: Method Course: Methods in Bioanalytics (8 ECTS/LP, Wahlpflicht) *13                                 |
|          | PHM-0298: Method course: From macroscopic to microscopic ferroic properties (8 ECTS/LP, Wahlpflicht)          |
|          | PHM-0363: Method Course: Applying Theoretical Concepts from Non-equilibrium Statistical Physics (8 ECTS/LP) * |
|          | PHM-0147: Method Course: Electron Microscopy (8 ECTS/LP, Wahlpflicht)19                                       |
|          | PHM-0146: Method Course: Electronics for Physicists and Materials Scientists (8 ECTS/LP, Wahlpflicht) *       |
|          | PHM-0172: Method Course: Functional Silicate-analogous Materials (8 ECTS/LP, Wahlpflicht)23                   |
|          | PHM-0148: Method Course: Optical Properties of Solids (8 ECTS/LP, Wahlpflicht)25                              |
|          | PHM-0149: Method Course: Methods in Biophysics (8 ECTS/LP, Wahlpflicht)27                                     |
|          | PHM-0153: Method Course: Magnetic and Superconducting Materials (8 ECTS/LP, Wahlpflicht)29                    |
|          | PHM-0154: Method Course: Modern Solid State NMR Spectroscopy (8 ECTS/LP, Wahlpflicht) 31                      |
|          | PHM-0206: Method Course: Infrared Microspectroscopy under Pressure (8 ECTS/LP, Wahlpflicht) *                 |
|          | PHM-0216: Method Course: Thermal Analysis (8 ECTS/LP, Wahlpflicht) *                                          |
|          | PHM-0224: Method Course: Theoretical Concepts and Simulation (8 ECTS/LP, Wahlpflicht)                         |
|          | PHM-0223: Method Course: Tools for Scientific Computing (8 ECTS/LP, Wahlpflicht)                              |
|          | PHM-0258: Method course: Charge doping effects in semiconductors (8 ECTS/LP, Wahlpflicht) * 42                |
|          | PHM-0285: Method Course: Computational Biophysics (8 ECTS/LP, Wahlpflicht)44                                  |
|          |                                                                                                               |

\* = At least one course for this module is offered in the current semester

# 4) 3 Conducting and Presenting Scientific Work

Version 1 (since SoSe15)

| PHM-0158: Introduction to Materials (= Seminar) (4 ECTS/LP, Pflicht) | .46 |
|----------------------------------------------------------------------|-----|
| PHM-0159: Laboratory Project (10 ECTS/LP, Pflicht)                   | .47 |

# 5) 4 Materials Science - Elective Topic

Version 4 (since WS21/22)

# a) Physics of Materials

### Version 4 (since WS21/22)

| PHM-0051: Biophysics and Biomaterials (6 ECTS/LP, Wahlpflicht)                                        | 48   |
|-------------------------------------------------------------------------------------------------------|------|
| PHM-0160: Dielectric and Optical Materials (6 ECTS/LP, Wahlpflicht)                                   | . 50 |
| PHM-0059: Magnetism (6 ECTS/LP, Wahlpflicht)                                                          | . 52 |
| PHM-0048: Physics and Technology of Semiconductor Devices (6 ECTS/LP, Wahlpflicht)                    | . 54 |
| PHM-0049: Nanostructures / Nanophysics (6 ECTS/LP, Wahlpflicht)                                       | 56   |
| PHM-0174: Theoretical Concepts and Simulation (6 ECTS/LP, Wahlpflicht) *                              | . 58 |
| PHM-0052: Solid State Spectroscopy with Synchrotron Radiation and Neutrons (6 ECTS/LP, Wahlpflicht) * | . 60 |
| PHM-0056: Ion-Solid Interaction (6 ECTS/LP, Wahlpflicht)                                              | 62   |
| PHM-0057: Physics of Thin Films (6 ECTS/LP, Wahlpflicht)                                              | . 64 |
| PHM-0058: Organic Semiconductors (6 ECTS/LP, Wahlpflicht)                                             | . 66 |
| PHM-0060: Low Temperature Physics (6 ECTS/LP, Wahlpflicht) *                                          | . 68 |
| PHM-0068: Spintronics (6 ECTS/LP, Wahlpflicht)                                                        | 70   |
| PHM-0066: Superconductivity (6 ECTS/LP, Wahlpflicht)                                                  | . 72 |
| PHM-0069: Applied Magnetic Materials and Methods (6 ECTS/LP, Wahlpflicht)                             | 74   |
| PHM-0198: Special Topics in Materials Science (Foreign Institution) (20 ECTS/LP)                      | 76   |

# b) Chemistry of Materials

Version 4 (since WS21/22)

| PHM-0054: Chemical Physics II (6 ECTS/LP, Wahlpflicht)                               | 77 |
|--------------------------------------------------------------------------------------|----|
| PHM-0161: Coordination Materials (6 ECTS/LP, Wahlpflicht)                            | 79 |
| PHM-0113: Advanced Solid State Materials (6 ECTS/LP, Wahlpflicht)                    | 81 |
| PHM-0217: Advanced X-ray and Neutron Diffraction Techniques (6 ECTS/LP, Wahlpflicht) | 83 |
| PHM-0114: Porous Functional Materials (6 ECTS/LP, Wahlpflicht)                       | 85 |

\* = At least one course for this module is offered in the current semester

| PHM-0167: Oxidation and Corrosion (6 ECTS/LP, Wahlpflicht) *                       | . 87 |
|------------------------------------------------------------------------------------|------|
| PHM-0198: Special Topics in Materials Science (Foreign Institution) (20 ECTS/LP)   | .89  |
| PHM-0218: Novel Methods in Solid State NMR Spectroscopy (6 ECTS/LP, Wahlpflicht) * | . 90 |

# c) Engineering of Materials Version 4 (since WS21/22)

| PHM-0164: Characterization of Composite Materials (6 ECTS/LP, Wahlpflicht)                            | 91   |
|-------------------------------------------------------------------------------------------------------|------|
| PHM-0163: Fiber Reinforced Composites: Processing and Materials Properties (6 ECTS/LP, Wahlpflicht) * | 93   |
| PHM-0165: Introduction to Mechanical Engineering (6 ECTS/LP, Wahlpflicht)                             | 95   |
| MRM-0052: Functional Polymers (6 ECTS/LP, Wahlpflicht)                                                | 96   |
| PHM-0122: Non-Destructive Testing (6 ECTS/LP, Wahlpflicht) *                                          | 98   |
| PHM-0168: Modern Metallic Materials (6 ECTS/LP, Wahlpflicht)                                          | .100 |
| PHM-0184: Sustainable Resource Management (6 ECTS/LP, Wahlpflicht)                                    | .102 |
| PHM-0050: Electronics for Physicists and Materials Scientists (6 ECTS/LP, Wahlpflicht)                | 104  |
| PHM-0166: Carbon-based functional Materials (Carboterials) (6 ECTS/LP, Wahlpflicht)                   | .106 |
| PHM-0198: Special Topics in Materials Science (Foreign Institution) (20 ECTS/LP)                      | 108  |
| PHM-0196: Surfaces and Interfaces II: Joining processes (6 ECTS/LP, Wahlpflicht)                      | 109  |

# 6) 6 Finals

### Version 1 (since SoSe15)

| PHM-0169: Masterthesis (26 ECTS/LP, Pflicht) | 111  |
|----------------------------------------------|------|
| PHM-0170: Colloquium (4 ECTS/LP, Pflicht) *  | .112 |

| Module PHM-0144: Materials Ph<br>Materials Physics                                           | ysics                                           | 6 ECTS/LP                                        |  |  |
|----------------------------------------------------------------------------------------------|-------------------------------------------------|--------------------------------------------------|--|--|
| Version 1.1.0 (since WS15/16)                                                                |                                                 |                                                  |  |  |
| Person responsible for module: apl. P                                                        | rof Dr. Helmut Karl                             |                                                  |  |  |
| Contante:                                                                                    |                                                 |                                                  |  |  |
| Electrons in solids                                                                          |                                                 |                                                  |  |  |
| Phonons                                                                                      | Phonons                                         |                                                  |  |  |
| <ul> <li>Properties of metals, semicondu</li> </ul>                                          | uctors and insulators                           |                                                  |  |  |
| <ul> <li>Application in optical, electronic</li> </ul>                                       | , and optoelectronic devices                    |                                                  |  |  |
| Dielectric solids, optical properti                                                          | ies                                             |                                                  |  |  |
| Learning Outcomes / Competences                                                              | ::                                              |                                                  |  |  |
| <ul> <li>The students know the basic ter</li> </ul>                                          | ms and concepts of solid state physics lik      | te the free electron gas, electronic band        |  |  |
| structure, charge carrier statistic                                                          | cs, phonons, doping and optical properties      | 3,                                               |  |  |
| are capable to apply derived ap                                                              | proximations as the effective mass or the       | electron-hole concept to describe                |  |  |
| basic characteristics of semicor                                                             | ductor materials,                               | ria electro-optic and thermal properties         |  |  |
| <ul> <li>nave the competence to apply to<br/>of solids and to describe their full</li> </ul> | netionalities                                   |                                                  |  |  |
| <ul> <li>understand size effects on mate</li> </ul>                                          | erial physical properties.                      |                                                  |  |  |
| <ul> <li>Integrated acquirement of soft s</li> </ul>                                         | kills: Working with specialist literature, lite | erature search and interdisciplinary             |  |  |
| thinking.                                                                                    |                                                 |                                                  |  |  |
| Remarks:                                                                                     |                                                 |                                                  |  |  |
| compulsory module                                                                            |                                                 |                                                  |  |  |
| Workload:                                                                                    |                                                 |                                                  |  |  |
| Total: 180 h                                                                                 |                                                 |                                                  |  |  |
| 120 h studying of course content usin                                                        | g provided materials (self-study)               |                                                  |  |  |
| 60 h lecture and exercise course (atte                                                       | ndance)                                         |                                                  |  |  |
| Conditions:                                                                                  |                                                 |                                                  |  |  |
| basic knowledge of solid state physics                                                       | \$                                              |                                                  |  |  |
| Frequency: each winter semester                                                              | Recommended Semester:<br>from 1.                | Minimal Duration of the Module:<br>1 semester[s] |  |  |
| Contact Hours:                                                                               | Repeat Exams Permitted:                         |                                                  |  |  |
| 4                                                                                            | according to the examination                    |                                                  |  |  |
|                                                                                              | regulations of the study program                |                                                  |  |  |
| Parts of the Module                                                                          |                                                 |                                                  |  |  |
| Part of the Module: Materials Physi                                                          | CS                                              |                                                  |  |  |
| Mode of Instruction: lecture                                                                 |                                                 |                                                  |  |  |
| Language: English                                                                            |                                                 |                                                  |  |  |
| Contact Hours: 3                                                                             |                                                 |                                                  |  |  |

Learning Outcome:

see module description

#### Contents:

- · Electrons in solids: Free electron gas, band structure, effective mass
- · Lattice dynamics: Phonons, phonon dispersion, acoustic and optical phonons
- · Properties of metals: Electrical conductivity, Fermi surfaces, thermal properties
- · Properties of semiconductors: Pure, intrinsic semiconductors, equilibrium conditions, doping
- Properties of dielectric materials: Propagation of electromagnetic waves, frequency dependent optical properties, polarization effects.
- Application in devices: Heterostructures, Schottky contact, pn-junction, solar cell, light emission and technological aspects

#### Literature:

- Hummel R. E. : Electronic Properties of Materials Springer 2001 (UP1000 H925)
- Burns G.: Solid State Physics Academic Press 1990 (UP1000 B967)
- Ashcroft N. W., Mermin N.D.: Solid State Physics (UP1000 A 824)
- Kittel C. : Introduction to Solid State Physics (UP1000 K 62)

#### Assigned Courses:

Materials Physics (lecture)

Part of the Module: Materials Physics (Tutorial)

Mode of Instruction: exercise course

Language: English

Contact Hours: 1

#### Learning Outcome:

see module description

Assigned Courses:

Materials Physics (Tutorial) (exercise course)

#### Examination

#### **Materials Physics**

written exam / length of examination: 90 minutes, graded

**Examination Prerequisites:** 

Materials Physics

| Module PHM-0110: Materials Che                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | emistry                                                          | 6 ECTS/LP                                        |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------|--------------------------------------------------|
| Materials Chemistry                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                  |                                                  |
| Version 1.2.0 (since WS09/10)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                  |                                                  |
| Person responsible for module: Prof. Dr. Henning Höppe                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                  |                                                  |
| Contents:<br>• Revision of basic chemical concernse<br>• Solid state chemical aspects of s<br>• Thermoelectrics<br>• Battery electrode materials<br>• Hydrogen storage materials<br>• Data storage materials<br>• Phosphors and pigments<br>• Heterogeneous catalysis<br>• nanoscale materials                                                                                                                                                                                                                             | elected materials, such as<br>,, ionic conductors<br>s           |                                                  |
| Learning Outcomes / Competences:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                  |                                                  |
| Learning Outcomes / Competences.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                  |                                                  |
| <ul> <li>be able to apply basic chemical concepts on materials science problems,</li> <li>broaden their ability to derive structure-property relations of materials combining their extended knowledge<br/>about symmetry-related properties, chemical bonding in solids and chemical properties of selected compound<br/>classes,</li> <li>be able to assess synthetic approaches towards relevant materials,</li> <li>acquire skills to perform literature research using online data bases.</li> </ul>                  |                                                                  |                                                  |
| Workload:         Total: 180 h         60 h lecture and exercise course (attendance)         20 h studying of course content using provided materials (self-study)         20 h studying of course content using literarture (self-study)         80 h studying of course content through exercises / case studies (self-study)         80 h studying of course content through exercises / case studies (self-study)         Conditions:         The lecture course is based on the Bachelor in Materials Science courses |                                                                  |                                                  |
| Chemie I and Chemie III (solid state ch                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | emistry).<br>T                                                   |                                                  |
| Frequency:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Recommended Semester:<br>from 1.                                 | Minimal Duration of the Module:<br>1 semester[s] |
| Contact Hours:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Repeat Exams Permitted:                                          |                                                  |
| 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | according to the examination<br>regulations of the study program |                                                  |
| Parts of the Module                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                  |                                                  |
| Part of the Module: Materials Chemis<br>Mode of Instruction: lecture<br>Language: English<br>Contact Hours: 3                                                                                                                                                                                                                                                                                                                                                                                                              | stry                                                             |                                                  |

# Learning Outcome:

see description of module

#### Contents:

see description of module

#### Literature:

- A. R. West, Solid State Chemistry, John Wiley, Chichester.
- U. Müller, Inorganic Structural Chemistry, Wiley-VCH.
- R. Dronskowski, Computational Chemistry of Solid State Materials, Wiley VCH.
- Textbooks on Basics of Inorganic Chemistry such as J. E. Huheey, E. Keiter, R. Keiter, Anorganische Chemie, de Gruyter, or equivalents.
- Moreover, selected reviews and journal articles will be cited on the slides.

Part of the Module: Materials Chemistry (Tutorial)

Mode of Instruction: exercise course

Language: English

#### Contact Hours: 1

#### Learning Outcome:

see description of module

#### Contents:

see description of module

#### Literature:

see associated lecture

#### Examination

#### Materials Chemistry

written exam / length of examination: 90 minutes, graded

#### Test Frequency:

only in the winter semester

#### Examination Prerequisites:

Materials Chemistry

#### **Description:**

ab dem WiSe 2023/4 wird nur noch die Modulprüfung angeboten, jedoch keine Vorlesung mehr

from winter term 2023/4 on only the exam will be conducted, but no lecture anymore

| Module PHM-0117: Surfaces and                                                                                                                                                                                                                                                                                                                                                                                                                                   | Interfaces                                                                                  | 6 ECTS/LP                                        |  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|--------------------------------------------------|--|
| Version 1.0.0 (since WS09/10)<br>Person responsible for module: Prof. Dr. Manfred Albrecht                                                                                                                                                                                                                                                                                                                                                                      |                                                                                             |                                                  |  |
| Contents:<br>Introduction                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                             |                                                  |  |
| <ul> <li>The importance of surfaces and i</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                            | interfaces                                                                                  |                                                  |  |
| Some basic facts from solid state physi                                                                                                                                                                                                                                                                                                                                                                                                                         | ics                                                                                         |                                                  |  |
| <ul> <li>Crystal lattice and reciprocal lattice</li> <li>Electronic structure of solids</li> <li>Lattice dynamics</li> </ul>                                                                                                                                                                                                                                                                                                                                    |                                                                                             |                                                  |  |
| Physics at surfaces and interfaces                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                             |                                                  |  |
| <ul> <li>Structure of ideal and real surfaces</li> <li>Relaxation and reconstruction</li> <li>Transport (diffusion, electronic) on interfaces</li> <li>Thermodynamics of interfaces</li> <li>Electronic structure of surfaces</li> <li>Chemical reactions on solid state surfaces (catalysis)</li> <li>Interface dominated materials (nano scale materials)</li> </ul>                                                                                          |                                                                                             |                                                  |  |
| Methods to study chemical composition                                                                                                                                                                                                                                                                                                                                                                                                                           | n and electronic structure, application exa                                                 | amples                                           |  |
| <ul> <li>Scanning electron microscopy</li> <li>Scanning tunneling and scanning force microscopy</li> <li>Auger – electron – spectroscopy</li> <li>Photo electron spectroscopy</li> </ul>                                                                                                                                                                                                                                                                        |                                                                                             |                                                  |  |
| Learning Outcomes / Competences:<br>The students:                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                             |                                                  |  |
| <ul> <li>have knowledge of the structure, the electronical properties, the thermodynamics, and the chemical reactions on surfaces and interfaces,</li> <li>acquire the skill to solve problems of fundamental research and applied sciences in the field of surface and interface physics,</li> <li>have the competence to solve certain problems autonomously based on the thought physical basics.</li> <li>Integrated acquirement of soft skills.</li> </ul> |                                                                                             |                                                  |  |
| Workload:<br>Total: 180 h<br>20 h studying of course content using literarture (self-study)<br>20 h studying of course content using provided materials (self-study)<br>80 h studying of course content through exercises / case studies (self-study)<br>60 h lecture and exercise course (attendance)                                                                                                                                                          |                                                                                             |                                                  |  |
| Conditions:                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                             |                                                  |  |
| The module "Physics IV - Solid State Physics" of the Bachelor of Physics /                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                             |                                                  |  |
| Frequency: each winter semester                                                                                                                                                                                                                                                                                                                                                                                                                                 | Recommended Semester:                                                                       | Minimal Duration of the Module:<br>1 semester[s] |  |
| Contact Hours:<br>4                                                                                                                                                                                                                                                                                                                                                                                                                                             | Repeat Exams Permitted:<br>according to the examination<br>regulations of the study program |                                                  |  |

| Parts of the Module                                                                                 |  |  |
|-----------------------------------------------------------------------------------------------------|--|--|
| Part of the Module: Surfaces and Interfaces                                                         |  |  |
| Mode of Instruction: lecture                                                                        |  |  |
| Language: English                                                                                   |  |  |
| Frequency: annually                                                                                 |  |  |
| Contact Hours: 3                                                                                    |  |  |
| Learning Outcome:                                                                                   |  |  |
| see module description                                                                              |  |  |
| Contents:                                                                                           |  |  |
| see module description                                                                              |  |  |
| Literature:                                                                                         |  |  |
| <ul> <li>Ertl, Küppers: Low Energy Electrons and Surface Chemistry (VCH)</li> </ul>                 |  |  |
| <ul> <li>Lüth: Surfaces and Interfaces of Solids (Springer)</li> </ul>                              |  |  |
| <ul> <li>Zangwill: Physics at Surfaces (Cambridge)</li> </ul>                                       |  |  |
| <ul> <li>Feldmann, Mayer: Fundamentals of Surface and thin Film Analysis (North Holland)</li> </ul> |  |  |
| <ul> <li>Henzler, Göpel: Oberflächenphysik des Festkörpers (Teubner)</li> </ul>                     |  |  |
| <ul> <li>Briggs, Seah: Practical Surface Analysis I und II (Wiley)</li> </ul>                       |  |  |
| Assigned Courses:                                                                                   |  |  |
| Surfaces and Interfaces (lecture)                                                                   |  |  |
|                                                                                                     |  |  |
| Part of the Module: Surfaces and Interfaces (Tutorial)                                              |  |  |

Mode of Instruction: exercise course

Language: English

Frequency: annually

Contact Hours: 1

Assigned Courses:

Surfaces and Interfaces (Tutorial) (exercise course)

#### Examination

Surfaces and Interfaces

written exam / length of examination: 90 minutes, graded

# Examination Prerequisites:

Surfaces and Interfaces

| Module PHM-0287: Method Cours                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | se: Spectroscopy of Organic                                                                 | 8 ECTS/LP                                         |  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|---------------------------------------------------|--|
| Semiconductors                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                             |                                                   |  |
| Method Course: Spectroscopy of Organic Semiconductors                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                             |                                                   |  |
| Version 1.0.0 (since SoSe22)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                             |                                                   |  |
| Person responsible for module: Prof. D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | r. Wolfgang Brütting                                                                        |                                                   |  |
| Dr. Alexander Hofmann                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                             | -                                                 |  |
| <ul> <li>Contents:</li> <li>Growth and characterisation of thin films (vapor deposition, spin coating, surface profiling, atomic force microscopy)</li> <li>Optical spectroscopy and photophysics (ellipsometry, transmission, steady-state and time-resolved photoluminescence, orientation anisotropy)</li> <li>Charge transport (space-charge limited current, field-effect mobility, doping)</li> <li>Light-emitting diodes (different emitter types, device efficiency measurement and simulation)</li> </ul>                                                                        |                                                                                             |                                                   |  |
| Learning Outcomes / Competences:<br>The students                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                             |                                                   |  |
| <ul> <li>get familar with the preparation of organic semiconductors as thin films and in devices and learn basic spectroscopic techniques to characterise them,</li> <li>acquire skills to analyse properties of the materials taking into account their specific features,</li> <li>and have the competence to comprehend and attend to current problems in the field of organic electronics.</li> <li>Integrated acquirement of soft skills: practicing technical English, working with English specialist literature, ability to critically interpret experimental results.</li> </ul> |                                                                                             |                                                   |  |
| Workload:<br>Total: 240 b                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                             |                                                   |  |
| Conditions:<br>Basic knowledge of atomic and solid state physics, as well as elementary<br>concepts of quantum physics.                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                             | Credit Requirements:<br>Bestehen der Modulprüfung |  |
| Frequency: annually                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Recommended Semester:<br>from 1.                                                            | Minimal Duration of the Module:<br>1 semester[s]  |  |
| <b>Contact Hours:</b><br>6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Repeat Exams Permitted:<br>according to the examination<br>regulations of the study program |                                                   |  |
| Parts of the Module                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                             | -                                                 |  |

Part of the Module: Method Course: Spectroscopy of Organic Semiconductors

Mode of Instruction: lecture

Language: English / German

Contact Hours: 2

#### Lehr-/Lernmethoden:

The basics for each topic will be tought in class, e.g. using black board and beamer presentation.

Literature:

- M. Schwoerer, H. Ch. Wolf: Organic Molecular Solids (Wiley-VCH)
- A. Köhler, H. Bässler: Electronic Processes in Organic Semiconductors (Wiley-VCH)
- S.R. Forrest: Organic Electronics (Oxford Univ. Press)

#### Assigned Courses:

Method Course: Spectroscopy of Organic Semiconductors (lecture)

Part of the Module: Method Course: Spectroscopy of Organic Semiconductors (Practical Course)

Mode of Instruction: internship

Language: English / German

Contact Hours: 4

### Lehr-/Lernmethoden:

After teaching in class, the students with go the lab to get practical experience with each topic.

# Examination

Method Course: Spectroscopy of Organic Semiconductors

report, graded

| Module PHM-0297: Method Course<br>Method Course: Methods in Bioanalytic                                                                       | se: Methods in Bioanalytics                                                           | 8 ECTS/LP                                                                          |
|-----------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------|------------------------------------------------------------------------------------|
| Version 1.0.0 (since WS22/23)<br>Person responsible for module: Prof. D                                                                       | r. Janina Bahnemann                                                                   |                                                                                    |
| Contents:                                                                                                                                     |                                                                                       |                                                                                    |
| - Basic concepts of instrumental analyti                                                                                                      | ics, sensor technology, validation, qualit                                            | y assurance                                                                        |
| - Biological basics for sensor design an                                                                                                      | d sample components                                                                   |                                                                                    |
| - Biological markers, biomaterials and t                                                                                                      | argets: bioreceptors: antibodies, enzyme                                              | es, aptamers, cells, nanoparticles                                                 |
| - Sensor principles / transducers: optica                                                                                                     | al, thermal, electrochemical, electromech                                             | nanical, colorimetric                                                              |
| - Sensor materials (e.g., silicon, gold, p                                                                                                    | lastics, polymers)                                                                    |                                                                                    |
| - Immobilization of bioreceptors on sen                                                                                                       | sor materials                                                                         |                                                                                    |
| - Lateral flow assays, Point-of-Care dia                                                                                                      | gnostics                                                                              |                                                                                    |
| - Carbohydrate and lipid analysis: Chro                                                                                                       | matographic methods (HPLC, GC, DC,                                                    | MS)                                                                                |
| - Amino acid analytics: HPLC, fluoresce                                                                                                       | ence spectroscopy                                                                     |                                                                                    |
| - Nucleic acid analytics: PCR method, s                                                                                                       | sequencing, electrophoresis, microarrays                                              | 8                                                                                  |
| - Protein analytics: Chromatography, el                                                                                                       | ectrophoresis, spectroscopy, Bradford a                                               | ssay                                                                               |
| - Cell analytics: Flow cytometry and mid                                                                                                      | croscopy                                                                              |                                                                                    |
| - Concepts and materials for sensor de                                                                                                        | velopment and optimization:                                                           |                                                                                    |
| e.g., Microfluidics, additive manufa                                                                                                          | acturing, nanoporous materials, nanopar                                               | ticles, amplifiers                                                                 |
| <ul> <li>Students will be able to use acquir<br/>bioanalysis and their applications.</li> <li>Students will be able to transfer ac</li> </ul> | red analytical expertise to adequately de<br>cquired knowledge from the lecture to pr | escribe and correlate basic principles of actical applications in the experimental |
| practical course.                                                                                                                             |                                                                                       |                                                                                    |
| Students will demonstrate self-cor<br>small groups.                                                                                           | npetence of work organization as well as                                              | s social competence by working in                                                  |
| <ul> <li>Students will learn to identify prote<br/>glucose concentrations, and to scientific<br/>results.</li> </ul>                          | eins using various analytical methods, to<br>cally evaluate, comprehensibly record in | set up biosensors for measuring writing, and present the practical                 |
| Remarks:                                                                                                                                      |                                                                                       |                                                                                    |
| ELECTIVE COMPULSORY MODULE                                                                                                                    |                                                                                       |                                                                                    |
| Number of students will be limited to 9.                                                                                                      |                                                                                       |                                                                                    |
| <b>Workload:</b><br>Total: 240 h                                                                                                              |                                                                                       |                                                                                    |
| Conditions:                                                                                                                                   |                                                                                       | Credit Requirements:                                                               |
| keine / none                                                                                                                                  | 1                                                                                     | Practical work and written report                                                  |
| Frequency: each semester                                                                                                                      | Recommended Semester:<br>1 4.                                                         | Minimal Duration of the Module:<br>1 semester[s]                                   |
| Contact Hours:<br>6                                                                                                                           | Repeat Exams Permitted:<br>none                                                       |                                                                                    |

| Parts of the Module                                                                                                                  |  |  |
|--------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Part of the Module: Method Course: Methods in Bioanalytics                                                                           |  |  |
| Language: German / English                                                                                                           |  |  |
| Contact Hours: 2                                                                                                                     |  |  |
| Literature:                                                                                                                          |  |  |
| Lottspeich and Engels: "Bioanalytik", Spektrum Akademischer Verlag, ISBN: 3-8274-2942-0                                              |  |  |
| <ul> <li>Lottspeich and Engels: "Bioanalytics: Analytical Methods and Concepts in Biochemistry and Molecular<br/>Biology"</li> </ul> |  |  |
| Ozkan et al.: "Biosensors: Fundamentals, Emerging Technologies, and Application", CRC Press                                          |  |  |
| • Yoon: "Introduction to Biosensors: From Electric Circuits to Immunosensors", Springer Verlag, ISBN: 978-3319801360                 |  |  |
| Thieman: "Introduction to Biotechnology", Pearson, ISBN: 978-1292261775                                                              |  |  |
| Assigned Courses:                                                                                                                    |  |  |
| Methods in Bioanalytics                                                                                                              |  |  |
| Part of the Module: Method Course: Methods in Bioanalytics (Pratical Course)<br>Language: German / English<br>Contact Hours: 4       |  |  |
| Assigned Courses:                                                                                                                    |  |  |
| Methods in Bioanalytics                                                                                                              |  |  |
| Examination                                                                                                                          |  |  |

# Method Course: Methods in Bioanalytics

report, Practical work and written report on practical work, graded

| Module PHM-0298: Method co<br>microscopic ferroic properties                                                                                                                                                                                                              | urse: From macroscopic to                                                                                                                                                                                                      | 8 ECTS/LP                                                                                                                                                                                        |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Method course: From macroscopic                                                                                                                                                                                                                                           | to microscopic ferroic properties                                                                                                                                                                                              |                                                                                                                                                                                                  |
| Version 1.0.0 (since WS22/23)                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                |                                                                                                                                                                                                  |
| Person responsible for module: Pro                                                                                                                                                                                                                                        | f. Dr. István Kézsmárki                                                                                                                                                                                                        |                                                                                                                                                                                                  |
| Contents:                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                |                                                                                                                                                                                                  |
| Within this course, the students will<br>ferromagnetism, which play a key re<br>course will teach the students to un<br>scale and, after having a fundamen<br>taught in preparing single crystals, p                                                                      | learn the basic concepts of ferroic properti<br>ole in materials science and engineering, a<br>derstand and perform experiments on ferro<br>tal understanding, microscopic measureme<br>planning complex measurement procedure | es, e.g. ferroelectricity and<br>t cryogenic temperatures. This method<br>bic materials first, on a macroscopic<br>ents. Therefore, the students will be<br>s, and evaluating the measured data. |
| Magnetic Properties will be investig                                                                                                                                                                                                                                      | ated via:                                                                                                                                                                                                                      |                                                                                                                                                                                                  |
| <ul> <li>Magnetization measurements</li> <li>Susceptibility measurements</li> <li>Magnetic force microscopy (N</li> </ul>                                                                                                                                                 | 1FM)                                                                                                                                                                                                                           |                                                                                                                                                                                                  |
| Electric Properties will be investigat                                                                                                                                                                                                                                    | ed via:                                                                                                                                                                                                                        |                                                                                                                                                                                                  |
| <ul> <li>Linear and non-linear dielectr</li> <li>SEM / EDX</li> <li>Polarization measurements</li> <li>Conductive atomic force micro</li> </ul>                                                                                                                           | ic spectroscopy<br>oscopy (cAFM) / piezo force microscopy (F                                                                                                                                                                   | PFM)                                                                                                                                                                                             |
| <ul> <li>fundamental knowledge of pro-<br/>instruction in experimental me</li> <li>perform experiments at cryog</li> <li>trained in planning and perfor</li> <li>learn to evaluate and analyze</li> <li>combining knowledge of mac<br/>and magnetic properties</li> </ul> | operties in electric and magnetic materials<br>ethods for investigation of ferroic properties<br>enic temperatures<br>ming complex experiments<br>the collected data<br>roscopic measurements to understand mic                | of condensed matter                                                                                                                                                                              |
| Remarks:<br>ELECTIVE COMPULSORY MODU                                                                                                                                                                                                                                      | LES                                                                                                                                                                                                                            |                                                                                                                                                                                                  |
| <b>Workload:</b><br>Total: 240 h                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                |                                                                                                                                                                                                  |
| <b>Conditions:</b><br>Recommended: basic knowledge in                                                                                                                                                                                                                     | solid state physics and ferroic properties                                                                                                                                                                                     | <b>Credit Requirements:</b><br>Participation in laboratory course and<br>oral examination.                                                                                                       |
| Frequency: each semester                                                                                                                                                                                                                                                  | Recommended Semester:                                                                                                                                                                                                          | Minimal Duration of the Module:<br>1 semester[s]                                                                                                                                                 |
| Contact Hours:<br>6                                                                                                                                                                                                                                                       | Repeat Exams Permitted:<br>according to the examination<br>regulations of the study program                                                                                                                                    |                                                                                                                                                                                                  |
| Parts of the Module                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                |                                                                                                                                                                                                  |
|                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                |                                                                                                                                                                                                  |

Part of the Module: Method course: From macroscopic to microscopic ferroic properties

Language: English

#### Literature:

- N.W. Ashcroft, N.D. Mermin, Festkörperphysik (Oldenbourg)
- Ch. Kittel, Einführung in die Festkörperphysik (Oldenbourg)
- V. K. Wadhawan, Introduction to ferroic materials (CRC Press)
- S. Kalinin, A. Gruverman, Scanning Probe Microscopy Electrical and electromechanical phenomena at the nanoscale (Springer)
- A. K. Tagantsev, Domains in Ferroic Crystals and Thin films (Springer)

Part of the Module: Method course: From macroscopic to microscopic ferroic properties (Practical Course) Language: English

Contact Hours: 4

#### Examination

#### Method course: From macroscopic to microscopic ferroic properties

oral exam / length of examination: 45 minutes, graded

| Modulo BHM 0262: Mothed Course: Applying Theoretical                                                                                                                                    |                                           |  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------|--|
| Concepts from Non-equilibrium Statistical Physics                                                                                                                                       | 8 ECT 3/LP                                |  |
| Method Course: Applying Theoretical Concepts from Non-equilibrium                                                                                                                       |                                           |  |
| Statistical Physics                                                                                                                                                                     |                                           |  |
| Version 1.0.0 (since WS23/24)                                                                                                                                                           |                                           |  |
| Person responsible for module: Prof. Dr. Christoph Alexander Weber                                                                                                                      |                                           |  |
| Contents:                                                                                                                                                                               |                                           |  |
| Phase separation kinetics of liquid mixtures                                                                                                                                            |                                           |  |
| Dynamics of simple fluids     Kingting of some dilute election and inclustion groups                                                                                                    |                                           |  |
| Self-propelled aligning gases                                                                                                                                                           |                                           |  |
| Motility-induced phase separation                                                                                                                                                       |                                           |  |
| Long-range polar order in two-dimensional active systems                                                                                                                                |                                           |  |
| Active Brownian motion                                                                                                                                                                  |                                           |  |
| <ul> <li>Mixtures of hot and cold particles</li> </ul>                                                                                                                                  |                                           |  |
| Stochastic chemical reaction kinetics at non-dilute conditions                                                                                                                          |                                           |  |
| Learning Outcomes / Competences:                                                                                                                                                        |                                           |  |
| Students will learn the following hard skills:                                                                                                                                          |                                           |  |
| <ul> <li>fundamental non-equilibrium theories (hydrodynamic transport theories, k</li> </ul>                                                                                            | inetic theories, dynamic density          |  |
| functional theory, stochastic descriptions, and Ito's stochastic calculus)                                                                                                              |                                           |  |
| <ul> <li>coarse-graining methods (lattice-based, moment expansion, Mori-Zwanzi<br/>analytical techniques (stability analysis, partial equilibria, multi scale participation)</li> </ul> | g,)<br>urbation theories)                 |  |
| <ul> <li>analytical techniques (stability analysis, partial equilibria, multi-scale perti-<br/>simulations techniques (lattice das automaton, Monte-Carlo, agent-based)</li> </ul>      | stochastic particle dynamics              |  |
| stochastic rotational dynamics,),                                                                                                                                                       | ,, paineie ajinainiee,                    |  |
| discretization methods (Gillespie, spectral method, finite differences, finite                                                                                                          | e elements)                               |  |
| <ul> <li>programming in Python and/or C++</li> </ul>                                                                                                                                    |                                           |  |
| Students will learn the following soft skills:                                                                                                                                          |                                           |  |
| Students learn how to apply theoretical concepts from non-equilibrium the                                                                                                               | ermodynamics                              |  |
| They get trained to establish links between theoretical concepts and mod                                                                                                                | ern research problems                     |  |
| They will build links between lecture and textbook knowledge and applied                                                                                                                | research question, providing excellent    |  |
| preparation for Master's and Ph.D. research in theoretical physics                                                                                                                      |                                           |  |
| <ul> <li>Students learn now to work in teams</li> <li>They get trained in autonomous working with scientific literature in English</li> </ul>                                           | h improving written and spoken            |  |
| English during lectures and exercises,                                                                                                                                                  | in, improving whiten and operen           |  |
| Students get stimulated to develop interdisciplinary thinking, and working                                                                                                              |                                           |  |
| Remarks:                                                                                                                                                                                |                                           |  |
| It may be helpful if the students have participated or are simultaneously particip                                                                                                      | ating in one of the following Master's    |  |
| courses: "Non-equilibrium Statistical Physics" and "Introduction to Stochastic Physics"                                                                                                 | rocesses". Please note that this is not a |  |
| prerequisite since there will be introductory lectures before the application sess                                                                                                      | ions.                                     |  |
| Workload:                                                                                                                                                                               |                                           |  |
| Total: 240 h                                                                                                                                                                            |                                           |  |
| 60 h studying of course content (self-study)                                                                                                                                            |                                           |  |
| 90 h lecture and exercise course (attendance)                                                                                                                                           |                                           |  |
| 30 h exam preparation (self-study)                                                                                                                                                      |                                           |  |
| Conditions:                                                                                                                                                                             | Credit Requirements:                      |  |
| Pronounced interest in theoretical physics and Statistical Physics                                                                                                                      | Bestehen der Modulprüfung                 |  |
|                                                                                                                                                                                         |                                           |  |

| Frequency: each winter semester | Recommended Semester:                                                                       | Minimal Duration of the Module:<br>semester[s] |
|---------------------------------|---------------------------------------------------------------------------------------------|------------------------------------------------|
| <b>Contact Hours:</b><br>6      | Repeat Exams Permitted:<br>according to the examination<br>regulations of the study program |                                                |

#### Parts of the Module

Part of the Module: Method Course: Applying Theoretical Concepts from Non-equilibrium Statistical Physics Mode of Instruction: lecture

Language: English / German

#### Contact Hours: 2

#### Contents:

see above

#### Literature:

- Non-Equilibrium Thermodynamics, S. R. De Groot and P. Mazur, Dover Publications, Dover ed edition, ISBN 486647412
- From Macrophysics to Microphysics Part 1 und 2, Roger Balian, Springer, ISBN 3540454780
- Principles of Condensed Matter Physics, P. M. Chaikin and T. C. Lubensky, Cambridge, ISBN 521794501
- A Kinetic View of Statistical Physics, Pavel L. Krapivsky, Sidney Redner, and Eli Ben–Naim, Cambridge, ISBN 486647412
- Basic Concepts for Simple and Complex Liquids, Jean-Louis Barrat and Jean-Pierre Hansen, Cambridge, ISBN 521789532
- Physical Hydrodynamics, Etienne Guyon, Jean-Pierre Hulin, Luc Petit, Catalin D. Mitescu, Oxford, ISBN 521851033
- Stochastic Processes in Physics and Chemistry, N. G. Van Kampen, North Holland, ISBN 444529659
- Stochastic Methods: A Handbook for the Natural and Social Sciences, Gardiner, Springer, ISBN 3540707123
- Thinking Probabilistically: Stochastic Processes, Disordered Systems, and Their Applications, Ariel Amir, Cambridge University Press, ISBN 1108479529
- Statistical Physics of Fields, Mehran Kardar, Cambridge, ISBN 052187341X

#### Assigned Courses:

Method Course: Applying Theoretical Concepts from Non-equilibrium Statistical Physics (lecture)

Part of the Module: Method Course: Applying Theoretical Concepts from Non-equilibrium Statistical Physics (Practical Course)

Mode of Instruction: exercise course Language: English / German Contact Hours: 4

# Assigned Courses:

Method Course: Applying Theoretical Concepts from Non-equilibrium Statistical Physics (Practical Course) (exercise course)

#### Examination

PHM-0363 Method Course: Applying Theoretical Concepts from Non-equilibrium Statistical Physics oral exam / length of examination: 1 hours, graded

| Module PHM-0147: Method Cour<br>Method Course: Electron Microscopy                                                                                                                                                                                                                                     | se: Electron Microscopy                                                                                                                                                                                                                          | 8 ECTS/LP                                                                                                                     |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------|
| Version 1.3.0 (since SoSe15)<br>Person responsible for module: Prof. D                                                                                                                                                                                                                                 | Dr. Ferdinand Haider                                                                                                                                                                                                                             |                                                                                                                               |
| Contents:                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                  |                                                                                                                               |
| Scanning electron microscopy (SEM)                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                  |                                                                                                                               |
| <ul><li>Electron optical components</li><li>Detectors</li><li>EDX, EBSD</li></ul>                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                  |                                                                                                                               |
| Transmission electron microscopy (TE                                                                                                                                                                                                                                                                   | M)                                                                                                                                                                                                                                               |                                                                                                                               |
| <ul> <li>Diffraction</li> <li>Contrast mechanisms</li> <li>High resolution EM</li> <li>Scanning TEM</li> <li>Analytical TEM</li> <li>Aberration correction</li> </ul>                                                                                                                                  |                                                                                                                                                                                                                                                  |                                                                                                                               |
| Learning Outcomes / Competences                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                  |                                                                                                                               |
| The students:                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                  |                                                                                                                               |
| <ul> <li>lectures to teach the theoretical lectures to teach the theoretical lectures to operate SEM and TE</li> <li>are able to characterize material</li> <li>Aquire the competence to decide</li> <li>aquire the competence to assess</li> <li>learn to search for scientific literation</li> </ul> | basics, which are afterwards deepened of<br>M on a basic level<br>s using different electron microscopy tec<br>e about a technique feasible for a certain<br>s EM images, also regarding artefacts<br>ature and to formulate a scientific report | using practical courses,<br>hniques<br>problem.                                                                               |
| Remarks:<br>ELECTIVE COMPULSORY MODULE                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                  |                                                                                                                               |
| Workload:<br>Total: 240 h<br>90 h lecture and exercise course (atter<br>150 h studying of course content using                                                                                                                                                                                         | ndance)<br>I provided materials (self-study)                                                                                                                                                                                                     |                                                                                                                               |
| Conditions:<br>Recommended: knowledge of solid-sta                                                                                                                                                                                                                                                     | ate physics, reciprocal lattice                                                                                                                                                                                                                  | <b>Credit Requirements:</b><br>regular participation, oral presentation<br>(10 min), written report (one report per<br>group) |
| Frequency: each summer semester                                                                                                                                                                                                                                                                        | Recommended Semester:<br>from 2.                                                                                                                                                                                                                 | Minimal Duration of the Module:<br>1 semester[s]                                                                              |
| <b>Contact Hours:</b><br>6                                                                                                                                                                                                                                                                             | Repeat Exams Permitted:<br>according to the examination<br>regulations of the study program                                                                                                                                                      |                                                                                                                               |
| Parts of the Module                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                  |                                                                                                                               |
| Part of the Module: Method Course:                                                                                                                                                                                                                                                                     | Electron Microscopy                                                                                                                                                                                                                              |                                                                                                                               |

# Mode of Instruction: lecture

Language: English

#### Contents:

#### SEM:

- 1. Layout of Electron Microscopes and Electron Optical Components
- 2. Electron Solid Interactions
- 3. Contrast Formation in Scanning Electron Microscopy (SEM)
- 4. SE/BSE contrast
- 5. Electron Back Scattering Diffraction (EBSD)
- 6. Analytical techniques
- 7. Special Applications of SEM

TEM:

- 1. TEM specimen preparation techniques
- 2. Components of a TEM, principle lens design, lens aberrations
- 3. Electron diffraction: fundamentals
- 4. Contrast formation at bright field, dark field, weak beam dark field, and many beam conditions, "chemical" imaging
- 5. Bright field, dark field, weak beam dark field imaging of dislocations
- 6. Kinematical theory of electron wave propagation in crystals
- 7. Howie Whelan equations, contrast of defects
- 8. High resolution TEM, lattice imaging of crystals
- 9. Advanced diffraction techniques: Kikuchi patterns, HOLZ lines and Convergent Beam Diffraction (CBED)
- 10. Image simulation
- 11. Analytical TEM: Electron energy loss spectroscopy & energy filtered TEM

#### Literature:

- D.B.Williams and C.B.Carter, Transmission Electron Microscopy, Plenum Press, New York/London, 1996
- M.A. Hirsch, A. Howie, R. Nicholson, D.W. Pashley, M.J. Whelan, Electron microscopy of thin crystals, Krieger Publishing Company, Malabar (Florida), 1977
- L. Reimer, Transmission electron microscopy, Springer Verlag, Berlin/Heidelberg/New York, 1984
- P.J. Goodhew, Thin foil preparation for electron microscopy, Elsevier, Amsterdam, 1985
- P.R. Buseck, J.M. Cowley, L. Eyring, High-resolution transmission electron microscopy, Oxford University Press, 1988
- E. Hornbogen, B. Skrotzki, Werkstoff-Mikroskopie, Springer Verlag, Berlin/Heidelberg/New York, 1995
- K. Wetzig, In situ scanning electron microscopy in materials research, Akad.-Verl., 1995
- J. I. goldstein, Scanning electron microscopy and x-ray microanalysis, Plenum Press, 1992
- L. Reimer, Scanning electron microscopy, Springer Verlag, 1985
- S. L. Flegler, J. W. Heckman, K. L. Klomparens, Elektronenmikroskopie, Spektrum, Akad. Verl., 1995

Part of the Module: Method Course: Electron Microscopy (Practical Course)

Mode of Instruction: laboratory course Language: English Contact Hours: 4

# Examination

Method Course: Electron Microscopy report, graded Examination Prerequisites: Method Course: Electron Microscopy

| Module PHM-0146: Method C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Course: Electronics for Physicists           | 8 ECTS/LP                                        |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------|--------------------------------------------------|
| Method Course: Electronics for Pl                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | nysicists and Materials Scientists           |                                                  |
| Version 2.0.0 (since SoSe22)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                              |                                                  |
| Person responsible for module: An                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ndreas Hörner                                |                                                  |
| Contents:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                              |                                                  |
| 1. Basics in electronic and electron | ctrical engineering                          |                                                  |
| 2. Quadrupole theory                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | and anome circuite                           |                                                  |
| 4. Boolean algebra and logic                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | and opamp circuits                           |                                                  |
| 5. Digital electronics and calcu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | lation circuits                              |                                                  |
| 6. Microprocessors and Netwo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | rks                                          |                                                  |
| 7. Basics in Electronic                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                              |                                                  |
| <ol> <li>8. Implementation of transistor</li> <li>9. Operational amplifiers</li> </ol>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | S                                            |                                                  |
| 10. Digital electronics                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                              |                                                  |
| 11. Practical circuit arrangemen                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | t                                            |                                                  |
| Learning Outcomes / Competen                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ices:                                        |                                                  |
| The students:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                              |                                                  |
| <ul> <li>know the basic terms, concerns</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | epts and phenomena of electronic and electr  | ical engineering for the use in the              |
| laboratory,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                              |                                                  |
| <ul> <li>have skills in easy circuit de</li> <li>have expertise in independe</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | sign, measuring and control technology, and  | log and digital electronics,                     |
| Pomorko                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                              |                                                  |
| ELECTIVE COMPULSORY MOD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ULE                                          |                                                  |
| Attendance in the Method Course                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | e: Electronics for Physicists and Material   | s Scientists (combined lab course                |
| AND lecture) excludes credit poir                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ts for the lecture Electronics for Physicist | s and Materials Scientists.                      |
| Workload:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                              |                                                  |
| Total: 240 h                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                              |                                                  |
| 140 h studying of course content u                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | using provided materials (self-study)        |                                                  |
| 60 h lecture (attendance)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | apore (colf study)                           |                                                  |
| 30 h internship / practical course (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | attendance)                                  |                                                  |
| Conditions:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | , , , , , , , , , , , , , , , , , , ,        | Credit Requirements:                             |
| none                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                              | written report (one per group)                   |
| Frequency: each semester                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Recommended Semester:<br>from 1.             | Minimal Duration of the Module:<br>1 semester[s] |
| Contact Hours:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Repeat Exams Permitted:                      |                                                  |
| 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | according to the examination                 |                                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | regulations of the study program             |                                                  |
| Parts of the Module                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                              |                                                  |
| Part of the Module: Method Cou                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | rse: Electronics for Physicists and Mater    | ials Scientists                                  |

#### Mode of Instruction: lecture

Language: English

#### Literature:

- Paul Horowitz: The Art of Electronics (Cambridge University Press)
- National Instruments: MultiSim software package (available in lecture)

#### Assigned Courses:

#### Method Course: Electronics for Physicists and Materials Scientists (lecture)

Part of the Module: Method Course: Electronics for Physicists and Materials Scientists (Practical Course)

Mode of Instruction: laboratory course

Language: English

Contact Hours: 2

Assigned Courses:

Method Course: Electronics for Physicists and Materials Scientists (Practical Course) (internship)

Examination

#### Method Course: Electronics for Physicists and Materials Scientists

written exam / length of examination: 90 minutes, graded

**Test Frequency:** 

each semester

| Module PHM-0172: Method Cours<br>Materials                                                                                                                                                                                                                                     | se: Functional Silicate-analogous                                                                                                                                                              | 8 ECTS/LP                                        |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------|
| Method Course: Functional Silicate-and                                                                                                                                                                                                                                         | alogous Materials                                                                                                                                                                              |                                                  |
| Version 1.0.0 (since SoSe15)<br>Person responsible for module: Prof. D                                                                                                                                                                                                         | r. Henning Höppe                                                                                                                                                                               |                                                  |
| Contents:                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                |                                                  |
| Synthesis and characterization of funct                                                                                                                                                                                                                                        | ional materials according to the topics:                                                                                                                                                       |                                                  |
| <ol> <li>Silicate-analogous compounds</li> <li>Luminescent materials / phospho</li> <li>Pigments</li> <li>Characterization methods: XRD,</li> </ol>                                                                                                                            | ors<br>spectroscopy (luminescence, UV/vis, FT                                                                                                                                                  | Γ-IR), thermal analysis                          |
| Learning Outcomes / Competences:<br>The students will know how to:                                                                                                                                                                                                             |                                                                                                                                                                                                |                                                  |
| <ul> <li>develop functional materials base</li> <li>apply classical and modern preparation autoclave reactions, use of silica</li> <li>work under non-ambient atmosple</li> <li>solve and refine crystal structures</li> <li>describe and classify these structions</li> </ul> | ed on silicate-analogous materials,<br>aration techniques (e.g. solid state reacti<br>ampoules),<br>neres (e.g. reducing, inert conditions),<br>s from single-crystal data,<br>tures properly. | on, sol-gel reaction, precipitation,             |
| Remarks:<br>ELECTIVE COMPULSORY MODULE                                                                                                                                                                                                                                         |                                                                                                                                                                                                |                                                  |
| Workload:                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                |                                                  |
| Total: 240 h                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                |                                                  |
| 120 h lecture and exercise course (atte                                                                                                                                                                                                                                        | ndance)                                                                                                                                                                                        |                                                  |
| 20 h studying of course content using p                                                                                                                                                                                                                                        | provided materials (self-study)                                                                                                                                                                |                                                  |
| 20 h studying of course content using li                                                                                                                                                                                                                                       | iterarture (self-study)                                                                                                                                                                        |                                                  |
| 80 h studying of course content through                                                                                                                                                                                                                                        | n exercises / case studies (self-study)                                                                                                                                                        |                                                  |
| Conditions:                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                | Credit Requirements:                             |
| Recommended: attendance to the lectu                                                                                                                                                                                                                                           | are "Advanced Solid State Materials"                                                                                                                                                           | written report (protocol)                        |
| Frequency: each semester                                                                                                                                                                                                                                                       | Recommended Semester:<br>from 2.                                                                                                                                                               | Minimal Duration of the Module:<br>1 semester[s] |
| Contact Hours:                                                                                                                                                                                                                                                                 | Repeat Exams Permitted:                                                                                                                                                                        |                                                  |
| 6                                                                                                                                                                                                                                                                              | according to the examination regulations of the study program                                                                                                                                  |                                                  |
| Parts of the Module                                                                                                                                                                                                                                                            |                                                                                                                                                                                                |                                                  |

Part of the Module: Method Course: Functional Silicate-analogous Materials (Practical Course)

Mode of Instruction: laboratory course

Language: English

#### Learning Outcome:

The students will know how to:

- · develop functional materials based on silicate-analogous materials,
- apply classical and modern preparation techniques (e.g. solid state reaction, sol-gel reaction, precipitation, autoclave reactions, use of silica ampoules),
- work under non-ambient atmospheres (e.g. reducing, inert conditions),
- · solve and refine crystal structures from single-crystal data,
- · describe and classify these structures properly.

#### Contents:

Synthesis and characterization of functional materials according to the topics:

- 1. Silicate-analogous compounds
- 2. Luminescent materials / phosphors
- 3. Pigments
- 4. Characterization methods: XRD, spectroscopy (luminescence, UV/vis, FT-IR), thermal analysis

#### Examination

Method Course: Functional Silicate-analogous Materials

seminar, graded

Examination Prerequisites:

Method Course: Functional Silicate-analogous Materials

| Module PHM-0148: Method Course<br>Method Course: Optical Properties of S                                                                                                                                                                                                                                         | se: Optical Properties of Solids                                                                                                                                                                                         | 8 ECTS/LP                                                                                                                    |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------|
| Version 1.4.0 (since SoSe15)<br>Person responsible for module: Prof. D                                                                                                                                                                                                                                           | r. Joachim Deisenhofer                                                                                                                                                                                                   | ,                                                                                                                            |
| Contents:<br>Electrodynamics of solids                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                          |                                                                                                                              |
| <ul><li>Maxwell equations</li><li>Electromagnetic waves</li><li>Refraction and interference, Fres</li></ul>                                                                                                                                                                                                      | nel equations                                                                                                                                                                                                            |                                                                                                                              |
| FTIR spectroscopy                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                          |                                                                                                                              |
| <ul> <li>Fourier transformation</li> <li>Michelson-Morley and Genzel int</li> <li>Sources and detectors</li> </ul>                                                                                                                                                                                               | erferometer                                                                                                                                                                                                              |                                                                                                                              |
| Terahertz Time Domain spectroscopy                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                          |                                                                                                                              |
| <ul><li>Generation of pulsed THz radiation</li><li>Gated detection, Austin switches</li></ul>                                                                                                                                                                                                                    | on                                                                                                                                                                                                                       |                                                                                                                              |
| Elementary excitations in solid material                                                                                                                                                                                                                                                                         | s                                                                                                                                                                                                                        |                                                                                                                              |
| <ul> <li>Rotational-vibrational bands</li> <li>Infrared-active phonons</li> <li>Interband excitations</li> <li>Crystal-field excitations</li> </ul>                                                                                                                                                              |                                                                                                                                                                                                                          |                                                                                                                              |
| <ul> <li>Learning Outcomes / Competences:</li> <li>The students know the basic prin</li> <li>The students know about fundam<br/>these spectroscopic methods,</li> <li>The students obtain the compete</li> <li>The students have the skills to exist.</li> <li>The students acquire scientific skills</li> </ul> | ciples of far-infrared spectroscopy and t<br>nental optical excitations in condensed n<br>nce to plan and carry out complex expen-<br>valuate and analyze optical data.<br>kills to search for scientific literature and | erahertz time-domain-spectroscopy,<br>natter materials that can be studied by<br>riments,<br>to evaluate scientific content. |
| Remarks:                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                          |                                                                                                                              |
| Workload:<br>Total: 240 h<br>30 h studying of course content using p<br>90 h studying of course content through<br>30 h studying of course content using li<br>90 h lecture and exercise course (atten                                                                                                           | provided materials (self-study)<br>n exercises / case studies (self-study)<br>iterarture (self-study)<br>idance)                                                                                                         |                                                                                                                              |
| Conditions:                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                          | Credit Requirements:                                                                                                         |
| Recommended: basic knowledge in sol<br>electrodynamics and optics                                                                                                                                                                                                                                                | lid-state physics, basic knowledge in                                                                                                                                                                                    | written report                                                                                                               |
| Frequency: each semester                                                                                                                                                                                                                                                                                         | Recommended Semester:<br>from 1.                                                                                                                                                                                         | Minimal Duration of the Module:<br>1 semester[s]                                                                             |
| <b>Contact Hours:</b><br>6                                                                                                                                                                                                                                                                                       | Repeat Exams Permitted:<br>according to the examination<br>regulations of the study program                                                                                                                              |                                                                                                                              |

Parts of the Module

Part of the Module: Method Course: Optical Properties of Solids

Mode of Instruction: lecture

Language: English

Contact Hours: 2

#### Literature:

Mark Fox, Optical Properties of Solids, Oxford Master Series

Eugene Hecht, Optics, Walter de Gruyter

Part of the Module: Method Course: Optical Properties of Solids (Practical Course)

Mode of Instruction: laboratory course Language: English Contact Hours: 4

#### Examination

Method Course: Optical Properties of Solids report, graded Examination Prerequisites: Method Course: Optical Properties of Solids

| Module PHM-0149: Method Cour<br>Method Course: Methods in Biophysic                                                                                                                                                                                                                                                       | se: Methods in Biophysics                                                                                                                                                                              | 8 ECTS/LP                                        |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------|
| Version 2.0.0 (since SoSe22)<br>Person responsible for module: Dr. Ch                                                                                                                                                                                                                                                     | ristoph Westerhausen                                                                                                                                                                                   |                                                  |
| <b>Contents:</b><br>Unit Membrane biophysics                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                        |                                                  |
| <ul> <li>Preparation of synthetic lipid men</li> <li>Size, fluorescence and phase tra</li> <li>Nanoparticle uptake synthetic men</li> </ul>                                                                                                                                                                               | mbranes<br>ansition characterization of lipid membr<br>embrane                                                                                                                                         | ranes                                            |
| Unit microfluidic                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                        |                                                  |
| <ul> <li>Microfluidic systems</li> <li>Fabrication of microfluidic system</li> <li>Calculation of microfluidic proble</li> </ul>                                                                                                                                                                                          | ns<br>ms                                                                                                                                                                                               |                                                  |
| Unit live cell experiments                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                        |                                                  |
| <ul> <li>Cell culture</li> <li>Cell couting and separation using</li> </ul>                                                                                                                                                                                                                                               | g microfluidics                                                                                                                                                                                        |                                                  |
| Unit analysis                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                        |                                                  |
| Learning Outcomes / Competences:<br>The students:                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                        |                                                  |
| <ul> <li>know basic terms, concepts and</li> <li>acquire basic knowledge of fluidi<br/>technologies of microfluidic mani</li> <li>learn skills in tissue culture and i</li> <li>learn skills in fluorescence micro</li> <li>learn skills to calculate fluidic pro</li> <li>learn skills to handle microfluidic</li> </ul> | phenomena in biophysics<br>c and biophysical phenomena on sma<br>pulation and analysis systems,<br>mmun-histochemical staining procedu<br>scopy,<br>oblems on small length scales,<br>channel systems. | II length scales and applications and res,       |
| Remarks:<br>ELECTIVE COMPULSORY MODULE                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                        |                                                  |
| Workload:<br>Total: 240 h                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                        |                                                  |
| <b>Conditions:</b><br>Attendance of the lecture "Biophysics a                                                                                                                                                                                                                                                             | and Biomaterials"                                                                                                                                                                                      | Credit Requirements:<br>1 written lab report     |
| Frequency: each summer semester                                                                                                                                                                                                                                                                                           | Recommended Semester:<br>from 2.                                                                                                                                                                       | Minimal Duration of the Module:<br>1 semester[s] |
| Contact Hours:<br>6                                                                                                                                                                                                                                                                                                       | Repeat Exams Permitted:<br>according to the examination<br>regulations of the study program                                                                                                            |                                                  |
| Parts of the Module                                                                                                                                                                                                                                                                                                       | ·                                                                                                                                                                                                      |                                                  |
| Part of the Module: Method Course:                                                                                                                                                                                                                                                                                        | Methods in Biophysics                                                                                                                                                                                  |                                                  |

Mode of Instruction: lecture

Language: English

Part of the Module: Method Course: Methods in Biophysics (Practical Course) Mode of Instruction: laboratory course Language: English Contact Hours: 4

#### Literature:

- T. Herrmann, Klinische Strahlenbiologie kurz und bündig, Elsevier Verlag, ISBN-13: 978-3-437-23960-1
- J. Freyschmidt, Handbuch diagnostische Radiologie Strahlenphysik, Strah-lenbiologie, Strahlenschutz, Springer Verlag, ISBN: 3-540-41419-3
- S. Haeberle und R. Zengerle, Microfluidic platforms for lab-on-a-chip applica-tions, Lab-on-a-chip, 2007, 7, 1094-1110
- J. Berthier, Microdrops and digital microfluidics, William Andrew Verlag, ISBN:978-0-8155-1544-9
- Lecture notes

#### Examination

Method Course: Methods in Biophysics report, graded

**Examination Prerequisites:** 

Method Course: Methods in Biophysics

| Module PHM-0153: Method Cours                                                                                                                                                                                                           | se: Magnetic and                                                                                                                                                                                              | 8 ECTS/LP                                                              |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------|
| Superconducting Materials                                                                                                                                                                                                               | -                                                                                                                                                                                                             |                                                                        |
| Method Course: Magnetic and Superco                                                                                                                                                                                                     | onducting Materials                                                                                                                                                                                           |                                                                        |
| Version 1.0.0 (since SoSe15)                                                                                                                                                                                                            |                                                                                                                                                                                                               |                                                                        |
| Person responsible for module: Prof. D                                                                                                                                                                                                  | r. Philipp Gegenwart                                                                                                                                                                                          |                                                                        |
| Contents:                                                                                                                                                                                                                               |                                                                                                                                                                                                               |                                                                        |
| Methods of growth and characterization                                                                                                                                                                                                  | 1:                                                                                                                                                                                                            |                                                                        |
| Sample preparation (bulk materials and                                                                                                                                                                                                  | d thin films), e.g.,                                                                                                                                                                                          |                                                                        |
| arcmelting                                                                                                                                                                                                                              |                                                                                                                                                                                                               |                                                                        |
| flux-growth                                                                                                                                                                                                                             |                                                                                                                                                                                                               |                                                                        |
| <ul> <li>sputtering and evaporation</li> </ul>                                                                                                                                                                                          |                                                                                                                                                                                                               |                                                                        |
| Sample characterization, e.g.,                                                                                                                                                                                                          |                                                                                                                                                                                                               |                                                                        |
| X-ray diffraction                                                                                                                                                                                                                       |                                                                                                                                                                                                               |                                                                        |
| <ul> <li>electron microscopy, scanning tu</li> </ul>                                                                                                                                                                                    | nneling microscopy                                                                                                                                                                                            |                                                                        |
| <ul> <li>magnetic susceptibility, electrical</li> </ul>                                                                                                                                                                                 | resistivity                                                                                                                                                                                                   |                                                                        |
| specific heat                                                                                                                                                                                                                           |                                                                                                                                                                                                               |                                                                        |
| Learning Outcomes / Competences:                                                                                                                                                                                                        |                                                                                                                                                                                                               |                                                                        |
|                                                                                                                                                                                                                                         |                                                                                                                                                                                                               |                                                                        |
| <ul> <li>get to know the basic methods of<br/>thin-film growth, X-ray diffraction,</li> <li>are trained in planning and perfor</li> <li>learn to evaluate and analyze the<br/>physics, including analysis of me<br/>theories</li> </ul> | materials growth and characterization, s<br>magnetic susceptibility, dc-conductivity,<br>rming complex experiments<br>e collected data, are taught to work on pr<br>asurement results and their interpretatio | oblems in experimental solid state<br>n in the framework of models and |
| Workload:                                                                                                                                                                                                                               | ·                                                                                                                                                                                                             |                                                                        |
| Total: 240 h                                                                                                                                                                                                                            |                                                                                                                                                                                                               |                                                                        |
| 90 h lecture and exercise course (atten                                                                                                                                                                                                 | dance)                                                                                                                                                                                                        |                                                                        |
| 30 h studying of course content using p                                                                                                                                                                                                 | provided materials (self-study)                                                                                                                                                                               |                                                                        |
| 90 h studying of course content throug                                                                                                                                                                                                  | n exercises / case studies (self-study)                                                                                                                                                                       |                                                                        |
| 30 h studying of course content using li                                                                                                                                                                                                | iterarture (self-study)                                                                                                                                                                                       |                                                                        |
| Conditions:                                                                                                                                                                                                                             |                                                                                                                                                                                                               | Credit Requirements:                                                   |
| Recommended: basic knowledge in so                                                                                                                                                                                                      | lid state physics and quantum                                                                                                                                                                                 | presentation and written report on the                                 |
| mechanics                                                                                                                                                                                                                               |                                                                                                                                                                                                               | experiments (editing time 3 weeks,                                     |
|                                                                                                                                                                                                                                         |                                                                                                                                                                                                               | max. 30 pages)                                                         |
| Frequency: each summer semester                                                                                                                                                                                                         | Recommended Semester:                                                                                                                                                                                         | Minimal Duration of the Module:                                        |
|                                                                                                                                                                                                                                         | from 1.                                                                                                                                                                                                       | 1 semester[s]                                                          |
| Contact Hours:                                                                                                                                                                                                                          | Repeat Exams Permitted:                                                                                                                                                                                       |                                                                        |
| 6                                                                                                                                                                                                                                       | according to the examination                                                                                                                                                                                  |                                                                        |
|                                                                                                                                                                                                                                         | regulations of the study program                                                                                                                                                                              |                                                                        |
| Parts of the Module                                                                                                                                                                                                                     |                                                                                                                                                                                                               |                                                                        |
| Part of the Module: Method Course:                                                                                                                                                                                                      | Magnetic and Superconducting Mater                                                                                                                                                                            | ials                                                                   |

# Mode of Instruction: lecture

Language: English

Part of the Module: Method Course: Magnetic and Superconducting Materials (Practical Course)

Mode of Instruction: laboratory course Language: English Contact Hours: 4

#### Examination

#### Method Course: Magnetic and Superconducting Materials

report, graded

# Examination Prerequisites:

Method Course: Magnetic and Superconducting Materials

| SPECTROSCOPY" is highly recommended.         Frequency: irregular       Recommended Semester:<br>from 1.         Contact Hours:       Repeat Exams Permitted:<br>according to the examination<br>regulations of the study program         Parts of the Module                                                             | Credit Requirements:<br>Bestehen der Modulprüfung<br>Minimal Duration of the Module:<br>1 semester[s] |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------|
| SPECTROSCOPY" is highly recommended.         Frequency: irregular       Recommended Semester:<br>from 1.         Contact Hours:       Repeat Exams Permitted:<br>according to the examination<br>regulations of the study program                                                                                         | Credit Requirements:<br>Bestehen der Modulprüfung<br>Minimal Duration of the Module:<br>1 semester[s] |
| SPECTROSCOPY" is highly recommended.         Frequency: irregular       Recommended Semester:<br>from 1.                                                                                                                                                                                                                  | Credit Requirements:<br>Bestehen der Modulprüfung<br>Minimal Duration of the Module:<br>1 semester[s] |
| SPECTROSCOPY" is highly recommended.                                                                                                                                                                                                                                                                                      | Credit Requirements:<br>Bestehen der Modulprüfung                                                     |
| Conditions:<br>The attendance of the lecture "NOVEL METHODS IN SOLID STATE NMR                                                                                                                                                                                                                                            |                                                                                                       |
| Workload:<br>Total: 240 h<br>30 h studying of course content using literarture (self-study)<br>90 h studying of course content through exercises / case studies (self-study)<br>30 h studying of course content using provided materials (self-study)<br>90 h lecture and exercise course (attendance)                    |                                                                                                       |
| Remarks:<br>ELECTIVE COMPULSORY MODULE                                                                                                                                                                                                                                                                                    |                                                                                                       |
| <ul> <li>The students:</li> <li>gain basic knowledge of the physical foundations of modern Solid-State</li> <li>gain basic practical knowledge of operating a solid-state NMR spectrom</li> <li>can under guidance plan, perform, and analyze modern solid-state l<br/>characterization of advanced materials.</li> </ul> | NMR spectroscopy,<br>eter,<br>NMR experiments for the structural                                      |
| Experimental work at the Solid-State NMR spectrometers, computer-aided and                                                                                                                                                                                                                                                | alysis and interpretation of acquired data                                                            |
| Modern applications of NMR in materials science                                                                                                                                                                                                                                                                           |                                                                                                       |
| Magic Angle Spinning techniques                                                                                                                                                                                                                                                                                           |                                                                                                       |
| <ul> <li>Chemical shift interaction</li> <li>Dipole interaction and</li> <li>Quadrupolar interaction</li> </ul>                                                                                                                                                                                                           |                                                                                                       |
| Internal interactions in NMR spectroscopy                                                                                                                                                                                                                                                                                 |                                                                                                       |
| Contents:<br>Physical foundations of NMR spectroscopy                                                                                                                                                                                                                                                                     |                                                                                                       |
| Version 2.0.0 (since SoSe17) Person responsible for module: Prof. Dr. Leo van Wüllen                                                                                                                                                                                                                                      | _                                                                                                     |
| Spectroscopy<br>Method Course: Modern Solid State NMR Spectroscopy                                                                                                                                                                                                                                                        | 0 2013/26                                                                                             |

Language: English

#### Literature:

- M. H. Levitt, spin Dynamics, John Wiley and Sons, Ltd., 2008.
- H. Günther NMR spectroscopy, Wiley, 2001.
- M. Duer, Introduction to Solid-State NMR spectroscopy, Blackwell Publishing Ltd., 2004.
- D. Canet, NMR concepts and methods, Springer, 1994.

Part of the Module: Method Course: Modern Solid State NMR Spectroscopy (Practical Course)

Mode of Instruction: laboratory course

Language: English

Contact Hours: 4

#### Literature:

- 1. M. H. Levitt, Spin Dynamics, John Wiley and Sons, Ltd., 2008.
- 2. H. Günther, NMR spectroscopy, Wiley 2001.
- 3. M.Duer, Introduction to Solid-State NMR spectroscopy, Blackwell Publishing Ltd., 2004.
- 4. D. Canet: NMR concepts and methods, Springer, 1994.

#### Examination

#### Method Course: Modern Solid State NMR Spectroscopy

report / work period for assignment: 2 weeks, graded

#### Examination Prerequisites:

Method Course: Modern Solid State NMR Spectroscopy

| Module PHM-0206: Method Cours                                                                                                                    | se: Infrared Microspectroscopy                                                              | 8 ECTS/LP                                        |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|--------------------------------------------------|--|
| Method Course: Infrared Microspectros                                                                                                            | scopy under Pressure                                                                        |                                                  |  |
| Version 1.0.0 (since WS16/17)                                                                                                                    |                                                                                             | <u> </u>                                         |  |
| Person responsible for module: Prof. D                                                                                                           | r. Christine Kuntscher                                                                      |                                                  |  |
| <b>Contents:</b><br>Electrodynamics of solids                                                                                                    |                                                                                             |                                                  |  |
| Maxwell equations and electromagnetic                                                                                                            | c waves in matter                                                                           |                                                  |  |
| Optical variables                                                                                                                                |                                                                                             |                                                  |  |
| Theories for dielectric function:                                                                                                                |                                                                                             |                                                  |  |
| i. Free carriers in metals and semicond                                                                                                          | uctors (Drude)                                                                              |                                                  |  |
| ii. Interband absorptions in semiconduc<br>iii. Vibrational absorptions<br>iv. Multilayer systems                                                | tors and insulators                                                                         |                                                  |  |
| FTIR microspectroscopy                                                                                                                           |                                                                                             |                                                  |  |
| Components of FTIR spectrometers<br>i. Light sources<br>ii. Interferometers<br>iii. Detectors                                                    |                                                                                             |                                                  |  |
| Microscope components<br>High pressure experiments Equipments                                                                                    | 5                                                                                           |                                                  |  |
| Pressure calibration                                                                                                                             |                                                                                             |                                                  |  |
| Experimental techniques under high pro<br>i. IR spectroscopy<br>ii. Raman scattering<br>iii. Magnetic measurements<br>iv. Transport measurements | essure                                                                                      |                                                  |  |
| Learning Outcomes / Competences:                                                                                                                 |                                                                                             |                                                  |  |
| The students                                                                                                                                     |                                                                                             |                                                  |  |
| Learn about the basics of the light interaction with various materials and the fundamentals of FTIR microspectroscopy,                           |                                                                                             |                                                  |  |
| Are introduced to the high pressure equipments used in infrared spectroscopy,                                                                    |                                                                                             |                                                  |  |
| Learn to carry out infrared microspectroscopy experiments under pressure,                                                                        |                                                                                             |                                                  |  |
| Learn to analyze the measured optical spectra.                                                                                                   |                                                                                             |                                                  |  |
| <b>Workload:</b><br>Total: 240 h                                                                                                                 |                                                                                             |                                                  |  |
| Conditions:                                                                                                                                      |                                                                                             | Credit Requirements:                             |  |
| none                                                                                                                                             |                                                                                             | Written report                                   |  |
| Frequency: each semester                                                                                                                         | Recommended Semester:<br>from 1.                                                            | Minimal Duration of the Module:<br>1 semester[s] |  |
| <b>Contact Hours:</b><br>6                                                                                                                       | Repeat Exams Permitted:<br>according to the examination<br>regulations of the study program |                                                  |  |

#### Parts of the Module

Part of the Module: Method Course: Infrared Microspectroscopy under Pressure

Mode of Instruction: lecture

Language: English

Contact Hours: 2

Assigned Courses:

Method Course: Infrared Microspectroscopy under Pressure (lecture)

Part of the Module: Method Course: Infrared Microspectroscopy under Pressure (Practical Course)

Mode of Instruction: laboratory course

Language: English Contact Hours: 4

Assigned Courses:

Method Course: Infrared Microspectroscopy under Pressure (Practical Course) (internship)

#### Examination

Method Course: Infrared Microspectroscopy under Pressure

report, graded

| Module PHM-0216: Method Course: Thermal Analysis<br>Method Course: Thermal Analysis                                                                                                                                                                                                                         |                                                                                                                                                                 | 8 ECTS/LP                                                                                           |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------|
| Version 1.0.0 (since WS16/17)<br>Person responsible for module: Prof.<br>Dr. Robert Horny                                                                                                                                                                                                                   | Dr. Ferdinand Haider                                                                                                                                            |                                                                                                     |
| Contents:<br>Methods of thermal analysis:<br>- Differential Scanning Calorimetry: D<br>- Thermo-gravimetric Analysis: TGA<br>- Dilatometry: DIL<br>- Dynamic-mechanical Analysis: DMA<br>-Rheology: RHEO<br>Advanced Methods:<br>- Modulated Differential Scanning Ca<br>- Evolved Gas Analysis: EGA (GCMS) | USC, DTA                                                                                                                                                        |                                                                                                     |
| Learning Outcomes / Competences<br>The students:<br>• get to know the basic principles<br>• learn about fundamental therma<br>processes (metals, polymers, c<br>• learn to plan and carry out com<br>• learn how to evaluate and analy<br>• are aware of common raw data                                    | s:<br>al processes in condensed matter ,e.g.<br>eramics)<br>plex experiments and the usage of adv<br>yze thermal data<br>artefacts leading to misinterpretation | phase transitions and relaxation<br>anced measurement techniques                                    |
| Remarks:                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                 |                                                                                                     |
| Workload:<br>Total: 240 h<br>90 h lecture and exercise course (atte<br>90 h studying of course content throu<br>30 h studying of course content using<br>30 h studying of course content using                                                                                                              | endance)<br>Igh exercises / case studies (self-study)<br>I literarture (self-study)<br>I provided materials (self-study)                                        |                                                                                                     |
| Conditions:<br>Recommended: basic knowledge in solid-state physics                                                                                                                                                                                                                                          |                                                                                                                                                                 | <b>Credit Requirements:</b><br>regular participation, oral presentation<br>(10 min), written report |
| Frequency: each winter semester                                                                                                                                                                                                                                                                             | Recommended Semester:<br>from 1.                                                                                                                                | Minimal Duration of the Module:<br>1 semester[s]                                                    |
| <b>Contact Hours:</b><br>6                                                                                                                                                                                                                                                                                  | Repeat Exams Permitted:<br>according to the examination<br>regulations of the study program                                                                     |                                                                                                     |
| Parts of the Module                                                                                                                                                                                                                                                                                         |                                                                                                                                                                 | —                                                                                                   |
| Part of the Module: Method Course                                                                                                                                                                                                                                                                           | e: Thermal Analysis                                                                                                                                             |                                                                                                     |

Mode of Instruction: lecture

Lecturers: Prof. Dr. Ferdinand Haider Language: English

#### Literature:

- Differential scanning calorimetry, Höhne, Hemminger, Flammersheim, H., Springer, 2003
- Practical Gas Chromatography, Dettmer-Wilde, Engewald, Springer, 2014
- Das Rheologie-Handbuch, Mezger, Vincentz, 2010

Assigned Courses:

Method Course: Thermal Analysis (course)

Part of the Module: Method Course: Thermal Analysis (Practical Course)

Mode of Instruction: laboratory course

Language: English

Contact Hours: 4

Assigned Courses:

Method Course: Thermal Analysis (course)

Examination

Method Course: Thermal Analysis report, graded
| Module PHM-0224: Method Course<br>Simulation<br>Method Course: Theoretical Concepts                                                                                                                                                                                                                                                                                | se: Theoretical Concepts and and Simulation                                                            | 8 ECTS/LP                                                |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------|----------------------------------------------------------|
| Version 1.0.0 (since WS15/16)<br>Person responsible for module: Prof. D                                                                                                                                                                                                                                                                                            | r. Liviu Chioncel                                                                                      | ]                                                        |
| <b>Contents:</b><br>This module covers Monte-Carlo methor<br>programing language will be employed                                                                                                                                                                                                                                                                  | ods (computational algorithms) for class<br>. The following common applications wi                     | ical and quantum problems. Python as<br>Il be discussed: |
| <ul> <li>Monte-Carlo integration, stochas</li> <li>Feynman path integrals: the cont</li> <li>Oder and disorder in spin system</li> </ul>                                                                                                                                                                                                                           | tic optimization, inverse problems<br>nection between classical and quantum<br>ns, fermions, and boson | systems                                                  |
| <ul> <li>Learning Outcomes / Competences:</li> <li>The students are capable of obtaining numerical solutions to problems too complicated to be solved analytical</li> <li>The students are able to present (graphically), discuss and analyze the results</li> <li>The students gain experience in formulatind and carrying out a collaborative project</li> </ul> |                                                                                                        |                                                          |
| <b>Remarks:</b><br>The number of students will be limited <sup>•</sup>                                                                                                                                                                                                                                                                                             | to 8.                                                                                                  |                                                          |
| Workload:<br>Total: 240 h<br>90 h preparation of presentations (self-<br>60 h preparation of written term papers<br>60 h studying of course content (self-st<br>90 h (attendance)                                                                                                                                                                                  | study)<br>s (self-study)<br>udy)                                                                       |                                                          |
| <b>Conditions:</b><br>Knowledge of the programming language Pythhon is expected on the level taught in the modul PHM-0041. Requirements to understand basic concepts in physics: Classical Mechanics (Newton, Lagrange), Electrodynamics, Thermodynamics and Quantum Mechanics.                                                                                    |                                                                                                        | Credit Requirements:<br>Passing the module exam          |
| Frequency: each summer semester                                                                                                                                                                                                                                                                                                                                    | Recommended Semester:<br>from 1.                                                                       | Minimal Duration of the Module:<br>1 semester[s]         |
| <b>Contact Hours:</b><br>6                                                                                                                                                                                                                                                                                                                                         | Repeat Exams Permitted:<br>according to the examination<br>regulations of the study program            |                                                          |

# Parts of the Module

Part of the Module: Method Course: Theoretical Concepts and Simulation

Mode of Instruction: lecture

Language: English / German

Contact Hours: 2

### Contents:

Concepts of classical and quantum statistical physics:

- the meaning of sampling, random variables, ergodicity
- equidistribution, pressure, temperature
- · path integrals, quantum statistics, enumeration, cluster algorithms

## Literature:

- 1. Werner Krauth, Algorithms and Computations (Oxford University Press, 2006)
- 2. R. H. Landau, A Survey of Computational Physics (Princeton Univ. Press, 2010)

# Part of the Module: Method Course: Theoretical Concepts and Simulation (Practical Course)

Mode of Instruction: internship

Language: English / German

Contact Hours: 4

# Contents:

see above

# Literature:

see above

# Examination

## Method Course: Theoretical Concepts and Simulation

report / work period for assignment: 4 weeks, graded

## **Description:**

The requirement for the credit points is based on a programming project carried out in a team of 2-3 students. The final report contains the formulation and a theoretical introduction into the problem, the numerical implementation, and the presentation of the results.

| Module PHM-0223: Method Course: Tools for Scientific<br>Computing<br>Method Course: Tools for Scientific Computing                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 8 ECTS/LP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Version 1.6.0 (since SoSe18)<br>Person responsible for module: Prof. Dr. Gert-Ludwig Ingold                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| <b>Contents:</b><br>Important tools for scientific computing are taught in this module and applied t students. As far as tools depend on a particular programming language, Pytho discussed include:                                                                                                                                                                                                                                                                                                                                                                                                                                                        | o specific scientific problems by the<br>on will be employed. Tools to be                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| <ul> <li>numerical libraries like NumPy and SciPy</li> <li>visualisation of numerical results</li> <li>use of a version control system like git and its application in collaborative</li> <li>testing of code</li> <li>profiling</li> <li>documentation of programs</li> </ul>                                                                                                                                                                                                                                                                                                                                                                              | e work                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| <ul> <li>Learning Outcomes / Competences:</li> <li>The students are capable of solving a physical problem of some complete They are able to visualize the results and to adequately document their</li> <li>The students know examples of numerical libraries and are able to apply</li> <li>The students know methods for quality assurance like the use of unit test They know techniques to identify run-time problems.</li> <li>The students know a distributed version control system and are able to project out a programming project in a small group.</li> <li>The students understand the relevance of the tools taught in the method.</li> </ul> | xity by means of numerical techniques.<br>program code.<br>y them to solve scientific problems.<br>sts and can apply them to their code.<br>use it in a practical problem.<br>work. They are able to plan and carry<br>I course for good scientific practice.                                                                                                                                                                                                                                                                                                              |
| Remarks:<br>The number of students will be limited to 12.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Workload:<br>Total: 240 h<br>60 h studying of course content (self-study)<br>90 h (attendance)<br>30 h preparation of presentations (self-study)<br>60 h preparation of written term papers (self-study)                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Conditions:<br>Knowledge of the programming language Python is expected on the<br>level taught in the module PHM-0243 "Einführung in Prinzipien der<br>Programmierung".                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Credit Requirements:<br>The module examination needs to be<br>passed which is based on a scientific<br>programming project carried out in a<br>small team of 2-3 students. The work<br>will be judged on the basis of a joint<br>final report and the contributions of<br>the individual students as documented<br>in the team's Gitlab project. The final<br>report should contain an explanation<br>of the scientific problem and its<br>numerical implementation as well as<br>a presentation of results. The code<br>should be appropriately documented<br>and tested. |

| Frequency: irregular | Recommended Semester:<br>from 1.                                                            | Minimal Duration of the Module:<br>1 semester[s] |
|----------------------|---------------------------------------------------------------------------------------------|--------------------------------------------------|
| Contact Hours:<br>6  | Repeat Exams Permitted:<br>according to the examination<br>regulations of the study program |                                                  |

## Parts of the Module

Part of the Module: Method Course: Tools for Scientific Computing

#### Mode of Instruction: lecture

#### Language: English / German

Contact Hours: 2

#### Learning Outcome:

- The students know the numerical libraries NumPy and SciPy and selected tools for the visualization of numerical results.
- The students know fundamental techniques for the quality assurance of programs like the use of unit tests, profiling and the use of the version control system git. They are able to adequately document their code.
- The students understand the relevance of the tools taught in the method course for good scientific practice.

#### Contents:

- numerical libraries NumPy and SciPy
- graphics with matplotlib
- · version control system Git and workflow for Gitlab/Github
- unit tests
- profiling
- · documentation using docstrings and Sphinx

#### Literature:

- A. Scopatz, K. D. Huff, Effective Computation in Physics (O'Reilly, 2015)
- · lecture notes are freely available at https://gertingold.github.io/tools4scicomp

Part of the Module: Method Course: Tools for Scientific Computing (Practical Course)

# Mode of Instruction: internship

#### Language: English / German

Contact Hours: 4

#### Learning Outcome:

- The students are capable of solving a physical problem of some complexity by means of numerical techniques and to visualize the results.
- They have gained some experience in the application of methods for quality assurance of their code and are able to appropriately document their programs.
- The students are able to work in a team and know how to make use of tools like Gitlab/Github.
- The students are able to present the status of their work, to critically assess it and to accept suggestions from others.

#### Contents:

The tools discussed in the lecture will be applied to specific scientific problems by small teams of 2-3 students under supervision. The teams regularly inform the other teams in oral presentations on their progress, the tools employed as well as encountered problems and their solution.

#### Examination

#### Method Course: Tools for Scientific Computing

report / work period for assignment: 4 weeks, graded

## **Test Frequency:**

when a course is offered

## Description:

The requirement for credit points is based on a scientific programming project carried out in a small team of 2-3 students. The work will be judged on the basis of a joint final report and the contributions of the individual students as documented in the team's Gitlab project. The final report should contain an explanation of the scientific problem and its numerical implementation as well as a presentation of results. The code should be appropriately documented and tested.

| Module PHM-0258: Method cou                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | rse: Charge doping effects in                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 8 ECTS/LP                                      |  |  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------|--|--|
| Semiconductors Method course: Charge doping effect                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                |  |  |
| Person responsible for module: Prof.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Dr. István Kézsmárki                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                |  |  |
| Dr. Lilian Prodan, Dr. Somnath Ghara                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                |  |  |
| Contents:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                |  |  |
| The goal of the method course is to n<br>concentration of charge carriers in se<br>of materials science. For this purpose<br>electron-doped and / or hole-doped n<br>transport and magnetic properties.                                                                                                                                                                                                                                                                                                             | The goal of the method course is to make students familiar with the concept of controlling the type and the concentration of charge carriers in semiconductors, which is widely used approach in electronics and various fields of materials science. For this purpose, the current method course will be dealing with the preparation of various electron-doped and / or hole-doped narrow-gap semiconductors and investigation of the influence of charge doping on transport and magnetic properties. |                                                |  |  |
| The following techniques will be invol                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ved:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                |  |  |
| <ul> <li>Synthesis of electron and hole doped narrow-gap semiconductors, such as Zn- and Ge-doped GaV4S8, in poly-<br/>crystalline forms using solid state reaction;</li> <li>Refining the structure and checking phase purity by X-ray powder diffraction;</li> <li>Resistivity and magneto-transport measurements;</li> <li>Hall effect measurements to quantify carrier concentration;</li> <li>Investigation of the doping-induced changes in the magnetic properties by magnetization measurements.</li> </ul> |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                |  |  |
| Learning Outcomes / Competences                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 5:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                |  |  |
| <ul> <li>The students gain basic knowledge how to tailor the bulk properties of narrow-gap semiconductors via different doping techniques.</li> <li>The students have detailed knowledge in performing XRD and magnetization experiments and know how to</li> </ul>                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                |  |  |
| analyze the data.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                |  |  |
| The students acquire the comptence to plan and perform Hall effect and magnetoresistance experiments and                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                |  |  |
| evaluate the obtained experimental results.                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                |  |  |
| • The students have the skill to distinguish between an n-type and p-type semiconductor.                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                |  |  |
| The students know how to calculate the charge, mobility, and charge carrier density of a semiconductor using     information obtained from the Hall effect experimente                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                |  |  |
| REMARKS:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                |  |  |
| Workload:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                |  |  |
| Total: 240 h                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                |  |  |
| Conditions: Credit Requirements:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                |  |  |
| Recommended: basic knowledge in solid state physics and semiconductors;                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Written report on the experiments              |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | (editing time 2 weeks)                         |  |  |
| Frequency: each semester                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Recommended Semester:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Minimal Duration of the Module:<br>semester[s] |  |  |
| Contact Hours:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Repeat Exams Permitted:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                |  |  |
| 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | according to the examination                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | regulations of the study program                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                |  |  |
| Parts of the Module                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                |  |  |

Part of the Module: Method course: Charge doping effects in semiconductors (Practical Course)

Mode of Instruction: internship

Language: English

Contact Hours: 4

## Contents:

The following techniques will be involved:

- Synthesis of electron and hole doped narrow-gap semiconductors, such as Zn- and Ge-doped GaV4S8, in poly-crystalline forms using solid state reaction;
- Refining the structure and checking phase purity by X-ray powder diffraction;
- · Resistivity and magneto-transport measurements;
- · Hall effect measurements to quantify carrier concentration;
- Investigation of the doping-induced changes in the magnetic properties by magnetization measurements.

#### **Assigned Courses:**

Method Course: Charge doping effects in semiconductors (lecture)

Part of the Module: Method course: Charge doping effects in semiconductors

Mode of Instruction: lecture

Language: English

Contact Hours: 2

#### Learning Outcome:

The goal of the method course is to make students familiar with the concept of controlling the type and the concentration of charge carriers in semiconductors, which is widely used approach in electronics and various fields of materials science. For this purpose, the current method course will be dealing with the preparation of various electron-doped and / or hole-doped narrow-gap semiconductors and investigation of the influence of charge doping on transport and magnetic properties.

Assigned Courses:

Method Course: Charge doping effects in semiconductors (lecture)

#### Examination

Method course: Charge doping effects in semiconductors report, graded

| Module PHM-0285: Method Course<br>Method Course: Computational Biophy                                                                                                                                                                                                           | se: Computational Biophysics                                                                                                                                                                                                          | 8 ECTS/LP                                                                                                                                                                                       |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Version 1.0.0 (since SoSe22)<br>Person responsible for module: Prof. D                                                                                                                                                                                                          | r. Nadine Schwierz-Neumann                                                                                                                                                                                                            |                                                                                                                                                                                                 |
| <b>Contents:</b><br>Life relies on the interactions of protein<br>computational methods to study the str<br>course, the physics behind biomolecula<br>mechanics are reviewed. In the second<br>dynamics simulations and Monte Carlo<br>consisting of proteins, nucleic acids an | s, nucleic acids, lipids and other biomole<br>ucture, dynamics and mechanics of thes<br>ar simulations is explained and the basic<br>l part, different simulation techniques are<br>simulations. Subsequently the methods<br>d lipids | ecules. This course introduces<br>se biomolecules. In the first part of the<br>principles of classical and statistical<br>e introduced including molecular<br>are applied to biological systems |
| <ul> <li>Learning Outcomes / Competences:</li> <li>Students develop an active unde simulations</li> <li>Students learn to solve typical bid</li> <li>Students learn how to run and ar</li> <li>Students learn to visualize, docu</li> </ul> Remarks:                            | rstanding of the principles, the capacity<br>ophysical problems analytically and num<br>nalyze computer simulations of biologica<br>ment and present their simulation results                                                         | and limitations of biomolecular<br>erically<br>I matter                                                                                                                                         |
| Number of students will be limited to 15<br>Workload:<br>Total: 240 h<br>90 h exam preparation (self-study)<br>60 h studying of course content (self-st<br>90 h (attendance)                                                                                                    | 5.<br>udy)                                                                                                                                                                                                                            |                                                                                                                                                                                                 |
| <b>Conditions:</b><br>Knowledge of classical mechanics on the bachelor level is expected.                                                                                                                                                                                       |                                                                                                                                                                                                                                       | Credit Requirements:<br>Passing of the module exam                                                                                                                                              |
| Frequency: every 3rd semester Ab<br>SoSe2022                                                                                                                                                                                                                                    | Recommended Semester:<br>from 1.                                                                                                                                                                                                      | Minimal Duration of the Module:<br>1 semester[s]                                                                                                                                                |
| <b>Contact Hours:</b><br>6                                                                                                                                                                                                                                                      | Repeat Exams Permitted:<br>according to the examination<br>regulations of the study program                                                                                                                                           |                                                                                                                                                                                                 |
| Parts of the Module                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                       | -                                                                                                                                                                                               |

Part of the Module: Method Course: Computational Biophysics

Mode of Instruction: lecture

Language: English / German

Contact Hours: 2

### Learning Outcome:

- Theoretical background of biomolecular simulations
- · Computational methods to describe the structure, dynamics and mechanics of biomolecules

#### Contents:

- · Introduction to classical mechanics in phase space
- · Probability and information theory
- Connection to statistical mechanics
- Molecular dynamics basics
- Monte Carlo Simulations
- · Forces and force fields in biomolecular systems
- · Simulations in different ensembles
- Calculating macroscopic thermodynamic properties from simulations

#### Literature:

- Daniel M. Zuckerman, Statistical Physics of Biomolecules (2010 by Taylor and Francis Inc.)
- Ken Dill and Sarina Bromberg, *Molecular Driving Forces* (2012 by Taylor and Francis Inc; 2nd edition)
- Daan Frenkel and Berend Smit, Understanding Molecular Simulation (2002 by Elsevier, 2nd edition)

Part of the Module: Method Course: Computational Biophysics (Practical Course)

#### Mode of Instruction: internship

Language: English / German

Contact Hours: 4

#### Learning Outcome:

- Students learn to solve typical biophysical problems analytically and numerically
- · Students learn to run and analyze computer simulations of biological matter
- · Students learn to visualization, documentation and presentation of results

#### Contents:

The methods and tools discussed in the lecture will be applied to typical biophysical problems and biological systems. The students work individually or in small teams under supervision. The students present their solutions, document their simulations and summarize their results in a final report.

#### Examination

#### Method Course: Computational Biophysics

written exam / length of examination: 2 hours, graded

| Module PHM-0158: Introduction<br>Introduction to Materials                                                                                                                                                       | to Materials (= Seminar)                                                                      | 4 ECTS/LP                                                                                                    |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|
| Version 1.0.0 (since SoSe15)<br>Person responsible for module: Prof.                                                                                                                                             | Dr. Ferdinand Haider                                                                          |                                                                                                              |
| <b>Contents:</b><br>Varying topics for each year, giving a<br>modern materials.                                                                                                                                  | n overview into scope, application, requir                                                    | ements and preparation of all types of                                                                       |
| <ul> <li>Learning Outcomes / Competences</li> <li>The students: <ul> <li>know the major principles, appli</li> <li>acquire the competence to com</li> <li>knowledge in given time to an a</li> </ul> </li> </ul> | cations and processes of modern materi<br>pile knowledge for examples of material<br>udience. | als,<br>specific topics and to present this                                                                  |
| Remarks:<br>COMPULSORY MODULE                                                                                                                                                                                    |                                                                                               |                                                                                                              |
| <b>Workload:</b><br>Total: 120 h                                                                                                                                                                                 |                                                                                               |                                                                                                              |
| Conditions:<br>Recommended: basic knowledge in n                                                                                                                                                                 | naterials science                                                                             | <b>Credit Requirements:</b><br>regular participation, oral presentation<br>with term paper (30 - 45 minutes) |
| Frequency: each winter semester                                                                                                                                                                                  | Recommended Semester:<br>from 1.                                                              | Minimal Duration of the Module:<br>1 semester[s]                                                             |
| Contact Hours:<br>2                                                                                                                                                                                              | Repeat Exams Permitted:<br>according to the examination<br>regulations of the study program   |                                                                                                              |
| Parts of the Module                                                                                                                                                                                              |                                                                                               |                                                                                                              |

Part of the Module: Introduction to Materials (Seminar)

Mode of Instruction: seminar

Language: English

Contact Hours: 2

# Literature:

specific for each topic, to be gathered by the students

# Examination

Introduction to Materials

presentation, graded

# Examination Prerequisites:

Introduction to Materials

| Modulo PHM 0159: Laboratory P                                                                                                                                                                                                                                                                                             | reject                                                  |                                         |  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------|-----------------------------------------|--|
| Laboratory Project 10 ECT                                                                                                                                                                                                                                                                                                 |                                                         |                                         |  |
| Version 1.0.0 (since SoSe15)                                                                                                                                                                                                                                                                                              |                                                         | I                                       |  |
| Person responsible for module: Prof. I                                                                                                                                                                                                                                                                                    | Dr. Dirk Volkmer                                        |                                         |  |
| Contents:                                                                                                                                                                                                                                                                                                                 |                                                         |                                         |  |
| Experimental or theoretical work in a la 3 months.                                                                                                                                                                                                                                                                        | aboratory / research group in the Institute             | of Physics. Has to be conducted within  |  |
| Learning Outcomes / Competences                                                                                                                                                                                                                                                                                           |                                                         |                                         |  |
| The students:                                                                                                                                                                                                                                                                                                             |                                                         |                                         |  |
| <ul> <li>know the basic terms, skills and concepts to pursuit a real research project in the existing laboratories within the research groups,</li> <li>experience the day to day life in a research group from within,</li> <li>prepare themselves to conduct a research project during their Masters thesis.</li> </ul> |                                                         |                                         |  |
| Remarks:                                                                                                                                                                                                                                                                                                                  |                                                         |                                         |  |
| The Laboratory Project will be offered                                                                                                                                                                                                                                                                                    | in SoSe 2020 as soon as the current situ                | ation allows.                           |  |
| COMPULSORY MODULE                                                                                                                                                                                                                                                                                                         |                                                         |                                         |  |
| Workload:                                                                                                                                                                                                                                                                                                                 |                                                         |                                         |  |
| Total: 300 h                                                                                                                                                                                                                                                                                                              |                                                         |                                         |  |
| Conditions:                                                                                                                                                                                                                                                                                                               |                                                         | Credit Requirements:                    |  |
| Recommended: solid knowledge in (so<br>Materials Science, both experimentally                                                                                                                                                                                                                                             | blid state) Physics, Chemistry and<br>and theoretically | 1 written report (editing time 2 weeks) |  |
| Frequency: each semester Siehe                                                                                                                                                                                                                                                                                            | Recommended Semester:                                   | Minimal Duration of the Module:         |  |
| Bemerkungen                                                                                                                                                                                                                                                                                                               | from 3.                                                 | 0 semester[s]                           |  |
| Contact Hours:                                                                                                                                                                                                                                                                                                            | Repeat Exams Permitted:                                 |                                         |  |
| 8                                                                                                                                                                                                                                                                                                                         | according to the examination                            |                                         |  |
|                                                                                                                                                                                                                                                                                                                           | regulations of the study program                        | J                                       |  |
| Parts of the Module                                                                                                                                                                                                                                                                                                       |                                                         |                                         |  |
| Part of the Module: Laboratory Proj                                                                                                                                                                                                                                                                                       | ect                                                     |                                         |  |
| Mode of Instruction: internship                                                                                                                                                                                                                                                                                           |                                                         |                                         |  |
| Language: English                                                                                                                                                                                                                                                                                                         |                                                         |                                         |  |
| Contact Hours: 8                                                                                                                                                                                                                                                                                                          |                                                         |                                         |  |
| Literature:                                                                                                                                                                                                                                                                                                               |                                                         |                                         |  |
| Various                                                                                                                                                                                                                                                                                                                   |                                                         |                                         |  |

# Examination

| project work, graded<br>Examination Prerequisites:<br>Laboratory Project | Laboratory Project         |  |  |
|--------------------------------------------------------------------------|----------------------------|--|--|
| Examination Prerequisites:<br>Laboratory Project                         | project work, graded       |  |  |
| Laboratory Project                                                       | Examination Prerequisites: |  |  |
|                                                                          | Laboratory Project         |  |  |

| Module PHM-0051: Biophysics a                                                            | nd Biomaterials                             | 6 ECTS/LP                                        |
|------------------------------------------------------------------------------------------|---------------------------------------------|--------------------------------------------------|
| Version 1.1.0 (since SoSe22)                                                             |                                             |                                                  |
| Person responsible for module: Dr. Ste                                                   | fan Thalhammer                              |                                                  |
| Westerhausen, Christoph, Dr.                                                             |                                             |                                                  |
| Contents:                                                                                |                                             |                                                  |
| <ul> <li>Transcription and translation</li> </ul>                                        |                                             |                                                  |
| Membranes                                                                                |                                             |                                                  |
| DNA and proteins                                                                         |                                             |                                                  |
| Enabling technologies     Microfluidics                                                  |                                             |                                                  |
| Radiation Biophysics                                                                     |                                             |                                                  |
| Learning Outcomes / Competences:                                                         |                                             |                                                  |
| The students know:                                                                       |                                             |                                                  |
| basic terms, concepts and phene                                                          | omena of biological physics                 |                                                  |
| <ul> <li>models of the (bio)polymer-theory strategies, membranes and proteins</li> </ul> | ry, microfluidics, radiation biophysics, na | nobiotechnology, sequencing                      |
| Γhe students obtain skills                                                               |                                             |                                                  |
| for independent processing of problems and dealing with current literature.              |                                             |                                                  |
| to translate a biological observation into a physical question.                          |                                             |                                                  |
| The students improve the key compete                                                     | ences:                                      |                                                  |
| self-dependent working with Eng                                                          | lish specialist literature.                 |                                                  |
| · processing and interpretation of                                                       | experimental data.                          |                                                  |
| interdisciplinary thinking and work                                                      | rking.                                      |                                                  |
| Workload:                                                                                |                                             |                                                  |
| Total: 180 h                                                                             |                                             |                                                  |
| 60 h lecture and exercise course (atter                                                  | ndance)                                     |                                                  |
| 20 h studying of course content using provided materials (self-study)                    |                                             |                                                  |
| 20 h studying of course content using literarture (self-study)                           |                                             |                                                  |
| Conditions:                                                                              |                                             |                                                  |
| Mechanics, Thermodynamics, Statistic                                                     | al Physics                                  |                                                  |
| Frequency: each summer semester                                                          | Recommended Semester:<br>from 2.            | Minimal Duration of the Module:<br>1 semester[s] |
| Contact Hours:                                                                           | Repeat Exams Permitted:                     |                                                  |
| 4                                                                                        | according to the examination                |                                                  |
|                                                                                          | regulations of the study program            |                                                  |
| Parts of the Module                                                                      |                                             |                                                  |

Part of the Module: Biophysics and Biomaterials Mode of Instruction: lecture Language: English Contact Hours: 3

### Learning Outcome:

See module description.

#### Contents:

- Radiation Biophysics
  - Radiation sources
  - Interaction of radiation with biological matter
  - Radiation protection principles
  - Low dose radiation
  - $\circ~$  LNT model in radiation biophysics
- Microfluidics
  - Life at Low Reynolds Numbers
  - The Navier-Stokes Equation
  - Low Reynolds Numbers The Stokes Equation
  - Breaking the Symmetry
- Membranes
  - Thermodynamics and Fluctuations
  - Thermodynamics of Interfaces
  - Phase Transitions 2 state model
  - · Lipid membranes and biological membranes, membrane elasticity
- Membranal transport
  - Random walk, friction and diffusion
  - Transmembranal ionic transport and ion channels
  - Electrophysiology of cells
  - Neuronal Dynamics

#### Literature:

- T. Herrmann, Klinische Strahlenbiologie kurz und bündig, Elsevier Verlag, ISBN-13: 978-3-437-23960-1
- J. Freyschmidt, Handbuch diagnostische Radiologie Strahlenphysik, Strahlenbiologie, Strahlenschutz, Springer Verlag, ISBN: 3-540-41419-3
- S. Haeberle, R. Zengerle, Microfluidic platforms for lab-on-a-chip applications, Lab-on-a-chip, 2007, 7, 1094-1110
- J. Berthier, Microdrops and digital microfluidics, William Andrew Verlag, ISBN:978-0-8155-1544-9
- lecture notes

#### Part of the Module: Biophysics and Biomaterials (Tutorial)

Mode of Instruction: exercise course

Language: English

Contact Hours: 1

#### Contents:

See module description.

#### Examination

**Biophysics and Biomaterials** 

written exam / length of examination: 90 minutes, graded

#### Examination Prerequisites:

Biophysics and Biomaterials

| Module PHM-0160: Dielectric and Dielectric and Optical Materials                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Optical Materials                                                                                                                                                                                                                    | 6 ECTS/LP                                        |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------|
| Version 1.1.0 (since SoSe15 to WS21/2<br>Person responsible for module: Prof. D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 22)<br>r. Joachim Deisenhofer                                                                                                                                                                                                        |                                                  |
| Contents:<br>Optical materials:<br>• Fundamentals of electromagnetic<br>absorption)<br>• Anisotropic media, linear optics<br>• Optical properties semiconductor<br>• Absorption and Luminescence, e.<br>• optoelectronics, detectors, light e<br>• quantum confinement<br>Dielectric materials:                                                                                                                                                                                                                                                                                                                                                                                                                                           | romagnetic wave propagation in homogenous media (refraction, reflection, transmission,<br>ar optics<br>iconductors/insulators, molecular materials, metals<br>escence, excitons, luminescence centers<br>ors, light emitting devices |                                                  |
| <ul> <li>Experimental techniques: quantities, broadband dielectric spectroscopy, nonlinear and polarization measurements</li> <li>Dynamic processes in dielectric materials: relaxation processes, phenomenological models</li> <li>Dielectric properties of disordered matter: liquids, glasses, plastic crystals</li> <li>Charge transport: hopping conductivity, universal dielectric response, ionic conductors</li> <li>Maxwell-Wagner relaxations: equivalent-circuits, applications (supercapacitors), colossal-dielectric-constant materials</li> <li>Ferroelectricity: dielectric properties, polarization, relaxor ferroelectrics, applications</li> <li>Multiferroic materials: mechanisms, materials, applications</li> </ul> |                                                                                                                                                                                                                                      |                                                  |
| spectrum of dielectric and optical phenomena. They are able to analyze materials requirements and have the competence to select materials for different kinds of applications.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                      |                                                  |
| Remarks:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                      |                                                  |
| Workload:<br>Total: 180 h<br>60 h lecture and exercise course (atten<br>20 h studying of course content using li<br>80 h studying of course content through<br>20 h studying of course content using p                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | dance)<br>terarture (self-study)<br>n exercises / case studies (self-study)<br>rovided materials (self-study)                                                                                                                        |                                                  |
| Conditions:<br>Basic knowledge of solid state physics                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                      |                                                  |
| Frequency: each summer semester                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Recommended Semester:<br>from 2.                                                                                                                                                                                                     | Minimal Duration of the Module:<br>1 semester[s] |
| Contact Hours:<br>4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Repeat Exams Permitted:<br>according to the examination<br>regulations of the study program                                                                                                                                          |                                                  |

## Parts of the Module

Part of the Module: Dielectric and Optical Materials

Mode of Instruction: lecture

Language: English

Contact Hours: 4

# Literature:

Mark Fox, Optical Properties of Solids, Oxford Master Series

## Examination

## **Dielectric and Optical Materials**

written exam / length of examination: 90 minutes, graded

# **Examination Prerequisites:**

Dielectric and Optical Materials

| Module PHM-0059: Magnetism                                                                                                                                                                                                                                                                                                                               |                                                                                                                                         | 6 ECTS/LP                                                                                      |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------|
| Magnetism                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                         |                                                                                                |
| Version 1.3.0 (since WS09/10)                                                                                                                                                                                                                                                                                                                            |                                                                                                                                         |                                                                                                |
| Person responsible for module: Dr. Ha                                                                                                                                                                                                                                                                                                                    | ns-Albrecht Krug von Nidda                                                                                                              |                                                                                                |
| Contents:<br>• History, basics<br>• Magnetic moments, classical and<br>• Exchange interaction and mean-<br>• Magnetic anisotropy and magnet<br>• Thermodynamics of magnetic sy<br>• Magnetic domains and domain v<br>• Magnetization processes and mit<br>• AC susceptibility and ESR<br>• Spintransport / spintronics<br>• Recent problems of magnetism | d quantum phenomenology<br>field theory<br>toelastic effects<br>stems and applications<br>valls<br>cro magnetic treatment               |                                                                                                |
| Learning Outcomes / Competences:                                                                                                                                                                                                                                                                                                                         |                                                                                                                                         |                                                                                                |
| The students:                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                         |                                                                                                |
| <ul> <li>for their description, like mean-fit</li> <li>have the ability to classify differe interpretation, and</li> <li>have the competence independe</li> <li>Integrated acquirement of soft sk</li> </ul>                                                                                                                                             | eld theory, exchange interactions and r<br>ent magnetic phenomena and to apply t<br>ently to treat fundamental and typical to<br>kills. | nicro magnetic models,<br>he corresponding models for their<br>pics and problems of magnetism. |
| Workload:<br>Total: 180 h<br>60 h lecture and exercise course (atter<br>80 h studying of course content throug<br>20 h studying of course content using<br>20 h studying of course content using                                                                                                                                                         | ndance)<br>h exercises / case studies (self-study)<br>literarture (self-study)<br>provided materials (self-study)                       |                                                                                                |
| Conditions:                                                                                                                                                                                                                                                                                                                                              | um mechanice                                                                                                                            |                                                                                                |
| Frequency: each summer semester                                                                                                                                                                                                                                                                                                                          | Recommended Semester:<br>from 1.                                                                                                        | Minimal Duration of the Module:<br>1 semester[s]                                               |
| Contact Hours:<br>4                                                                                                                                                                                                                                                                                                                                      | Repeat Exams Permitted:<br>according to the examination<br>regulations of the study program                                             |                                                                                                |
| Parts of the Module                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                         |                                                                                                |
| Part of the Module: Magnetism<br>Mode of Instruction: lecture<br>Language: English<br>Contact Hours: 3                                                                                                                                                                                                                                                   |                                                                                                                                         |                                                                                                |
| Learning Outcome:<br>see module description                                                                                                                                                                                                                                                                                                              |                                                                                                                                         |                                                                                                |

# Contents:

see module description

- D. H. Martin, Magnetism in Solids (London Iliffe Books Ltd.)
- J. B. Goodenough, Magnetism and the Chemical Bond (Wiley)
- P. A. Cox, Transition Metal Oxides (Oxford University Press)
- C. Kittel, Solid State Phyics (Wiley)
- D. C. Mattis, The Theory of Magnetism (Wiley)
- G. L. Squires, Thermal Neutron Scattering (Dover Publications Inc.)

Part of the Module: Magnetism (Tutorial)

Mode of Instruction: exercise course

Language: English

Contact Hours: 1

# Examination

#### Magnetism

written exam / length of examination: 90 minutes, graded

## Examination Prerequisites:

Magnetism

| Module PHM-0048: Physics and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Technology of Semiconductor                                                                 | 6 ECTS/LP                                                                                                                                                                                                                            |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Devices                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                             |                                                                                                                                                                                                                                      |
| Physics and Technology of Semicondu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                             |                                                                                                                                                                                                                                      |
| Version 1.0.0 (since SoSe23)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                             |                                                                                                                                                                                                                                      |
| Person responsible for module: apl. Pr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | of. Dr. Heimut Karl                                                                         |                                                                                                                                                                                                                                      |
| Contents:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                             |                                                                                                                                                                                                                                      |
| 1. Basic properties of semiconducto                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ors (electronic bandstructure, doping, car                                                  | rier excitations and carrier transport)                                                                                                                                                                                              |
| <ol> <li>Semiconductor diodes and trans</li> <li>Semiconductor technology</li> </ol>                                                                                                                                                                                                                                                                                                                                                                                                                                    | ISTOPS                                                                                      |                                                                                                                                                                                                                                      |
| 3. Semiconductor technology                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                             | ·                                                                                                                                                                                                                                    |
| <ul> <li>Basic knowledge of solid-state a excitations, and carrier transport</li> <li>Application of developed concept semiconductors.</li> <li>Application of these concepts to such as diodes and transistors</li> <li>Knowledge of the technologically</li> <li>Integrated acquisition of soft skil presentation techniques, capacit thinking and working.</li> <li>Workload:</li> <li>Total: 180 h</li> <li>20 h studying of course content using 180 h</li> <li>Studying of course content throug 180 h</li> </ul> | nd semiconductor physics such as electr                                                     | onic bandstructure, doping, carrier<br>describe the basic properties of<br>rinciples of semiconductor devices<br>ductor micro- and nanofabrication.<br>erature in English, acquisition of<br>rimental results, and interdisciplinary |
| Conditions:<br>recommended prerequisites: basic kno<br>physics and quantum mechanics.                                                                                                                                                                                                                                                                                                                                                                                                                                   | wledge in solid state physics, statistical                                                  |                                                                                                                                                                                                                                      |
| Frequency: each summer semester                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Recommended Semester:<br>from 1.                                                            | Minimal Duration of the Module:<br>1 semester[s]                                                                                                                                                                                     |
| Contact Hours:<br>4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Repeat Exams Permitted:<br>according to the examination<br>regulations of the study program |                                                                                                                                                                                                                                      |
| Parts of the Module                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                             |                                                                                                                                                                                                                                      |
| Part of the Module: Physics and Tec<br>Mode of Instruction: lecture<br>Language: English<br>Contact Hours: 3                                                                                                                                                                                                                                                                                                                                                                                                            | chnology of Semiconductor Devices                                                           |                                                                                                                                                                                                                                      |
| Learning Outcome:<br>see module description                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                             |                                                                                                                                                                                                                                      |
| Contents:<br>see module description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                             |                                                                                                                                                                                                                                      |

- Yu und Cardona: Fundamentals of Semiconductors (Springer)
- Sze: Physics of Semiconductor Devices (Wiley)
- Sze: Semiconductor Devices (Wiley)
- Madelung: Halbleiterphysik (Springer)
- Singh: Electronic and Optoelectronic Properties of Semiconductor Structures (Cambridge University Press)

Part of the Module: Physics and Technology of Semiconductor Devices (Tutorial)

Mode of Instruction: exercise course

Language: English

Contact Hours: 1

#### Contents:

see module description

# Examination

## Physics and Technology of Semiconductor Devices

written exam / length of examination: 90 minutes, graded

**Examination Prerequisites:** 

Physics and Technology of Semiconductor Devices

| Module PHM-0049: Nanostructur                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | es / Nanophysics                                                                                                                                                                                                                                       | 6 ECTS/LP                                                                             |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------|--|
| Nanostructures / Nanophysics                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                        |                                                                                       |  |
| Version 1.2.0 (since WS09/10)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | n lateria Vianandala                                                                                                                                                                                                                                   |                                                                                       |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | r. Istvan kezsmarki                                                                                                                                                                                                                                    |                                                                                       |  |
| <ol> <li>Contents:</li> <li>Semiconductor quantum wells, w</li> <li>Magnetotransport in low-dimensi</li> <li>Optical properties of nanostructu</li> <li>Fabrication and detection technic</li> <li>Ferroic properties of nanostructu</li> <li>Nano-bio-magnetism (magnetota)</li> </ol>                                                                                                                                                                                                                                                                                                                      | rires and dots, low dimensional electron s<br>onal systems, Quantum-Hall-Effect, Qua<br>res and their application in modern optoe<br>ques of nanostructures<br>res (Ferroelectricity, Magnetism, Multifer<br>actic bacteria, magnetoreception, malaria | systems<br>intized conductance<br>electonic devices, Nanophotonics<br>rroicity)<br>a) |  |
| <ul> <li>Learning Outcomes / Competences:</li> <li>The students gain basic knowledge of the fundamental concepts in modern nanoscale science.</li> <li>The students have detailed knowledge of low-dimensional semiconductor structures and how these systems can be applied for novel functional devices for high-frequency electronics and optoelectronics</li> <li>The students gain competence in selecting different fabrication and characterization approaches for specific nanostructures.</li> <li>The students are able apply these concepts to tackle present problems in nanophysics.</li> </ul> |                                                                                                                                                                                                                                                        |                                                                                       |  |
| Total:       180 h         80 h studying of course content through exercises / case studies (self-study)         20 h studying of course content using literarture (self-study)         60 h lecture and exercise course (attendance)         20 h studying of course content using provided materials (self-study) <b>Conditions:</b> recommended prerequisites: basic knowledge in solid-state physics and                                                                                                                                                                                                 |                                                                                                                                                                                                                                                        |                                                                                       |  |
| mechanics.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                        |                                                                                       |  |
| Frequency: each summer semester                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Recommended Semester:<br>from 1.                                                                                                                                                                                                                       | Minimal Duration of the Module:<br>1 semester[s]                                      |  |
| Contact Hours:<br>4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Repeat Exams Permitted:<br>according to the examination<br>regulations of the study program                                                                                                                                                            |                                                                                       |  |
| Parts of the Module                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                        |                                                                                       |  |
| Part of the Module: Nanostructures /<br>Mode of Instruction: lecture<br>Language: English<br>Contact Hours: 4<br>Learning Outcome:                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | <sup>/</sup> Nanophysics                                                                                                                                                                                                                               |                                                                                       |  |
| see module description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                        |                                                                                       |  |
| see module description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                        |                                                                                       |  |

- Yu und Cardona: Fundamentals of Semiconductors
- Singh:Electronic and Optoelectronic Properties of Semiconductor Structures (Cambridge University Press)
- Davies: The Physics of low-dimensional Semiconductors (Cambridge University Press)

## Examination

# Nanostructures / Nanophysics

oral exam / length of examination: 30 minutes, graded

Examination Prerequisites:

Nanostructures / Nanophysics

| Module PHM-0174: Theoretical C<br>Theoretical Concepts and Simulation                                                                                                                                                                                                                                                                                                              | Concepts and Simulation                                                                                                                                                                                                                                                                                  | 6 ECTS/LP                                                                                                                                                             |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Version 1.1.0 (since WS09/10)                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                          | <u></u>                                                                                                                                                               |
| Person responsible for module: Prof. D                                                                                                                                                                                                                                                                                                                                             | Dr. Liviu Chioncel                                                                                                                                                                                                                                                                                       |                                                                                                                                                                       |
| Contents:                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                       |
| <ol> <li>Introduction: operating systems,</li> <li>Basic numerical methods: interp</li> <li>Ordinary and Partial Differential</li> <li>Concepts in atomistic materials r</li> <li>Simulation of material's properties</li> </ol>                                                                                                                                                   | programming languages, data visualizat<br>olation, integration<br>Equations (e.g., diffusion equation, Schr<br>modelling<br>es (molecular spectroscopy, magnetism)                                                                                                                                       | ion tools<br>ödinger equation)                                                                                                                                        |
| Learning Outcomes / Competences:<br>The students:                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                       |
| <ul> <li>know the principal concepts of the are able to solve simple problem</li> <li>are able to choose the adequate corresponding methods,</li> <li>have the expertise to judge the concept of solution of solution of solution of solution of solution of solutions, ability to investigate and oral form, concept of solution of solution of solution of solutions.</li> </ul> | the numerical methods relevant in materia<br>is numerically. They are able to write the<br>levels of description and approximations<br>quality and validity of the numerical resul-<br>kills: independent handling of hard- and s<br>igate abstract circumstances with the hel<br>capacity for teamwork. | al science,<br>codes and to present the results,<br>s for a given problem and apply the<br>ts,<br>software while using English<br>Ip of a computer and to present the |
| Remarks:                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                       |
| Links to exemplary software related to                                                                                                                                                                                                                                                                                                                                             | the course:                                                                                                                                                                                                                                                                                              |                                                                                                                                                                       |
| <ul> <li>http://www.bloodshed.net/</li> <li>http://www.cplusplus.com/doc/tu</li> <li>http://www.cygwin.com/</li> <li>http://avogadro.cc/</li> <li>http://orcaforum.kofo.mpg.de/application</li> </ul>                                                                                                                                                                              | torial/<br>p.php/portal                                                                                                                                                                                                                                                                                  |                                                                                                                                                                       |
| Workload:                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                       |
| Total: 180 h<br>60 h lecture and exercise course (atter<br>80 h studying of course content throug<br>20 h studying of course content using<br>20 h studying of course content using                                                                                                                                                                                                | ndance)<br>h exercises / case studies (self-study)<br>literarture (self-study)<br>provided materials (self-study)                                                                                                                                                                                        |                                                                                                                                                                       |
| <b>Conditions:</b><br>Recommended: basic knowledge of quantum mechanics, thermodynamics,<br>and numerical methods as well as of a programming language                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                          | Credit Requirements:<br>project work in small groups, including<br>a written summary of the results<br>(ca. 10-20 pages) as well as an oral<br>presentation           |
| Frequency: each summer semester                                                                                                                                                                                                                                                                                                                                                    | Recommended Semester:<br>from 2.                                                                                                                                                                                                                                                                         | Minimal Duration of the Module:<br>1 semester[s]                                                                                                                      |
| Contact Hours:                                                                                                                                                                                                                                                                                                                                                                     | Repeat Exams Permitted:                                                                                                                                                                                                                                                                                  |                                                                                                                                                                       |
|                                                                                                                                                                                                                                                                                                                                                                                    | regulations of the study program                                                                                                                                                                                                                                                                         |                                                                                                                                                                       |

#### Parts of the Module

Part of the Module: Theoretical Concepts and Simulation

Mode of Instruction: lecture

Language: English

Frequency: each winter semester

Contact Hours: 3

Literature:

- Tao Pang, An Introduction to Computational Physics (Cambridge University Press)
- J. M. Thijssen, Computational Physics (Cambridge University Press)
- Koonin, Meredith, Computational Physics (Addison-Weseley)
- D. C. Rapaport, The Art of Molecular Dynamics Simulation, (Cambridge University Press)
- W. H. Press et al, Numerical Recipes (Cambridge University Press)

Assigned Courses:

Theoretical Concepts and Simulation (lecture)

Part of the Module: Theoretical Concepts and Simulation (Project)

Mode of Instruction: exercise course

Language: English

Contact Hours: 1

**Assigned Courses:** 

Theoretical Concepts and Simulation (Project) (exercise course)

Examination

**Theoretical Concepts and Simulation** 

seminar / length of examination: 30 minutes, graded

**Examination Prerequisites:** 

Theoretical Concepts and Simulation

| Madula DHM 0052: Salid State St                                                                     | nostrossony with Synchrotron              |                                     |
|-----------------------------------------------------------------------------------------------------|-------------------------------------------|-------------------------------------|
| Radiation and Neutrons                                                                              | pectroscopy with Synchrotron              | 0 ECT3/LP                           |
| Solid State Spectroscopy with Synchrotron Radiation and Neutrons                                    |                                           |                                     |
| Version 1.2.0 (since WS09/10)                                                                       |                                           | 1                                   |
| Person responsible for module: Prof. D                                                              | r. Christine Kuntscher                    |                                     |
| Contents:                                                                                           |                                           |                                     |
| 1. Electromagnetic radiation: description, generation, detection [5]                                |                                           |                                     |
| 2. Spectral analysis of electromagnetic radiation: monochromators, spectrometer, interferometer [2] |                                           |                                     |
| 3. Excitations in the solid state: Die                                                              | lectric function [2]                      |                                     |
| 4. Infrared spectroscopy                                                                            |                                           |                                     |
| 5. Ellipsometry                                                                                     |                                           |                                     |
| 6. Photoemission spectroscopy                                                                       |                                           |                                     |
| 8 Neutrons: Sources detectors                                                                       |                                           |                                     |
| 9. Neutron scattering                                                                               |                                           |                                     |
| Learning Outcomes / Competences:                                                                    |                                           |                                     |
| The students:                                                                                       |                                           |                                     |
| <ul> <li>know the basics of spectroscopy</li> </ul>                                                 | and important instrumentation and meth    | nods.                               |
| <ul> <li>have acquired the skills of formula</li> </ul>                                             | ating a mathematical-physical ansatz in   | spectroscopy and can apply these in |
| the field of solid state spectrosco                                                                 | ру,                                       |                                     |
| <ul> <li>have the competence to deal with</li> </ul>                                                | h current problems in solid state spectro | scopy autonomously, and are able to |
| judge proper measurement meth                                                                       | ods for application.                      |                                     |
| Integrated acquirement of soft skills.                                                              |                                           |                                     |
| Workload:                                                                                           |                                           |                                     |
| Total: 180 h                                                                                        |                                           |                                     |
| 20 h studying of course content using l                                                             | iterarture (self-study)                   |                                     |
| 20 h studying of course content using p                                                             | provided materials (self-study)           |                                     |
| 60 h lecture and exercise course (atten                                                             | idance)                                   |                                     |
| 80 h studying of course content through exercises / case studies (self-study)                       |                                           |                                     |
| Conditions:                                                                                         |                                           |                                     |
|                                                                                                     |                                           |                                     |
| Frequency: each winter semester                                                                     | Recommended Semester:                     | Minimal Duration of the Module:     |
|                                                                                                     |                                           |                                     |
| Contact Hours:                                                                                      | Repeat Exams Permitted:                   |                                     |
| 4                                                                                                   | according to the examination              |                                     |
|                                                                                                     |                                           | ]                                   |
| Parts of the Module                                                                                 |                                           |                                     |
| Part of the Module: Solid State Spec                                                                | troscopy with Synchrotron Radiation       | and Neutrons                        |
| Mode of Instruction: lecture                                                                        |                                           |                                     |

Language: English

Contact Hours: 3

## Learning Outcome:

see module description

### Contents:

see module description

- H. Kuzmany, Solid State Spectroscopy (Springer)
- N. W. Ashcroft, N. D. Mermin, Solid State Physics (Holt, Rinehart and Winston)
- J. M. Hollas, Modern Spectroscopy

Assigned Courses:

#### Solid State Spectroscopy with Synchrotron Radiation and Neutrons (lecture)

Part of the Module: Solid State Spectroscopy with Synchrotron Radiation and Neutrons (Tutorial)

Mode of Instruction: exercise course

Language: English

Contact Hours: 1

Assigned Courses:

Solid State Spectroscopy with Synchrotron Radiation and Neutrons (Tutorial) (exercise course)

#### Examination

### Solid State Spectroscopy with Synchrotron Radiation and Neutrons

oral exam / length of examination: 30 minutes, graded

**Examination Prerequisites:** 

Solid State Spectroscopy with Synchrotron Radiation and Neutrons

| [                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                       | 1                                                                                                       |  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|--|
| Module PHM-0056: Ion-Solid Inte                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | eraction                                                                                                                                                                              | 6 ECTS/LP                                                                                               |  |
| Ion-Solid Interaction                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                       |                                                                                                         |  |
| Version 1.0.0 (since WS09/10)                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                       |                                                                                                         |  |
| Person responsible for module: apl. P                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | rof. Dr. Helmut Karl                                                                                                                                                                  |                                                                                                         |  |
| <ul> <li>Contents:</li> <li>Introduction (areas of scientific a</li> <li>Fundamentals of atomic collision collision models)</li> <li>Ion-induced modification of solid implantation, radiation damage,</li> <li>Transport phenomena</li> <li>Analysis with ion beams</li> </ul>                                                                                                                                                                                                                           | and technological application, principles)<br>n processes (scattering, cross-sections, o<br>ds (integrated circuit fabrication with emp<br>ion milling and etching (RIE), sputtering, | energy loss models, potentials in binary<br>hasis on ion induced phenomena, ion<br>erosion, deposition) |  |
| Learning Outcomes / Competences                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | :                                                                                                                                                                                     |                                                                                                         |  |
| <ul> <li>I he students:</li> <li>know the physical principles and the basical mechanisms of the interaction between particles and solid state bodies in the energy range of eV to MeV,</li> <li>are able to choose adequate physical models for specific technological and scientific applications, and</li> <li>have the competence to work extensively autonomous on problems concerning the interaction between ions and solid state bodies.</li> <li>Integrated acquirement of soft skills</li> </ul> |                                                                                                                                                                                       |                                                                                                         |  |
| Workload:<br>Total: 180 h<br>20 h studying of course content using<br>20 h studying of course content using<br>80 h studying of course content throug<br>60 h lecture and exercise course (atte                                                                                                                                                                                                                                                                                                           | literarture (self-study)<br>provided materials (self-study)<br>gh exercises / case studies (self-study)<br>ndance)                                                                    |                                                                                                         |  |
| Conditions:<br>Basic Courses in Physics I–IV, Solid State Physics, Nuclear Physics                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                       |                                                                                                         |  |
| Frequency: annually                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Recommended Semester:<br>from 2.                                                                                                                                                      | Minimal Duration of the Module:<br>1 semester[s]                                                        |  |
| Contact Hours:<br>4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Repeat Exams Permitted:<br>according to the examination<br>regulations of the study program                                                                                           |                                                                                                         |  |
| Parts of the Module                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                       |                                                                                                         |  |
| Part of the Module: Ion-Solid Interac<br>Mode of Instruction: lecture<br>Language: English<br>Contact Hours: 3<br>Learning Outcome:                                                                                                                                                                                                                                                                                                                                                                       | ction                                                                                                                                                                                 |                                                                                                         |  |
| see module description Contents:                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                       |                                                                                                         |  |

see module description

- R. Smith, Atomic and ion collisions in solids and at surfaces (Cambridge University Press, 1997)
- E. Rimini, Ion implantation: Basics to device fabrication (Kluwer, 1995)
- W. Eckstein: Computer Simulation of Ion-Solid Interactions (Springer, 1991)
- H. Ryssel, I. Ruge: Ionenimplantation (Teubner, 1978)
- Y. H. Ohtsuki: Charged Beam Interaction with Solids (Taylor & Francis, 1983)
- J. F. Ziegler (Hrsg.): The Stopping and Range of Ions in Solids (Pergamon)
- R. Behrisch (Hrsg.): Sputtering by Particle Bombardment (Springer)
- M. Nastasi, J. K. Hirvonen, J. W. Mayer: Ion-Solid Interactions: Fundamentals and Applications (Cambridge University Press, 1996)
- http://www.SRIM.org

#### Part of the Module: Ion-Solid Interaction (Tutorial)

Mode of Instruction: exercise course

Language: English

Contact Hours: 1

#### Examination

#### **Ion-Solid Interaction**

written exam / length of examination: 90 minutes, graded

# **Examination Prerequisites:**

Ion-Solid Interaction

| Module PHM-0057: Physics of T<br>Physics of Thin Films                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | hin Films                                                                                                         | 6 ECTS/LP                                        |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------|--------------------------------------------------|
| Version 1.6.0 (since WS09/10)<br>Person responsible for module: PD Dr. German Hammerl                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                   |                                                  |
| <ul> <li>Contents:</li> <li>Thin film growth: basics, thermodynamic considerations, surface kinetics, growth mechanisms</li> <li>Thin film growth techniques: vacuum technology, physical vapor deposition, chemical vapor deposition</li> <li>Analysis and characterization of thin films: in-sit methods, ex-situ methods, direct methods</li> <li>Properties and applications of thin films</li> </ul>                                                                                                                                                                                                                                                                                                                                          |                                                                                                                   |                                                  |
| Learning Outcomes / Competences                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                   |                                                  |
| <ul> <li>know a broad spectrum of methods of thin film technology and material properties and applications of thin films,</li> <li>have the competence to deal with current problems in the field of thin film technology largely autonomous,</li> <li>are able to choose the right substrates and thin film materials for epitaxial thin film growth to achieve desired application conditions,</li> <li>aquire skills of combining the various technologies for growing thin layers with respect to their properties and applications, and</li> <li>aquire scientific soft skills to search for scientific literature, unterstand technical english, work with literature in the field of thin films, interpret experimental results.</li> </ul> |                                                                                                                   |                                                  |
| Total: 180 h<br>80 h studying of course content throug<br>20 h studying of course content using<br>60 h lecture and exercise course (atten<br>20 h studying of course content using                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | h exercises / case studies (self-study)<br>literarture (self-study)<br>ndance)<br>provided materials (self-study) |                                                  |
| Conditions:<br>none                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                   |                                                  |
| Frequency: every 3rd semester                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Recommended Semester:<br>from 2.                                                                                  | Minimal Duration of the Module:<br>1 semester[s] |
| Contact Hours:<br>4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Repeat Exams Permitted:<br>according to the examination<br>regulations of the study program                       |                                                  |
| Parts of the Module                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                   |                                                  |
| Part of the Module: Physics of Thin                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Films                                                                                                             |                                                  |

Mode of Instruction: lecture

Language: English

Frequency: each winter semester

# Contact Hours: 4 Learning Outcome:

see module description

## Contents:

see module description

- H. Frey, G. Kienel, Dünnschichttechnologie (VDI Verlag, 1987)
- H. Lüth, Solid Surfaces, Interfaces and Thin Films (Springer Verlag, 2001)
- A. Wagendristel, Y. Wang, An Introduction to Physics and Technology of Thin Films (World Scientific Publishing, 1994)
- M. Ohring, The Materials Science of Thin Films (Academic Press, 1992)

## Examination

Physics of Thin Films

written exam / length of examination: 90 minutes, graded

Examination Prerequisites:

Physics of Thin Films

| Module PHM-0058: Organic Sen                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | niconductors                                                                                                                                          | 6 ECTS/LP                                        |  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------|--|
| Version 1.6.0 (since WS09/10)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                       |                                                  |  |
| Person responsible for module: Prof.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Dr. Wolfgang Brütting                                                                                                                                 |                                                  |  |
| Contents:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                       |                                                  |  |
| Basic concepts and applications of or                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Basic concepts and applications of organic semiconductors                                                                                             |                                                  |  |
| Introduction                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Introduction                                                                                                                                          |                                                  |  |
| <ul> <li>Materials and preparation</li> <li>Structural properties</li> <li>Electronic structure</li> <li>Optical and electrical properties</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                            | <ul> <li>Materials and preparation</li> <li>Structural properties</li> <li>Electronic structure</li> <li>Optical and electrical properties</li> </ul> |                                                  |  |
| Devices and Applications                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                       |                                                  |  |
| <ul> <li>Organic metals</li> <li>Light-emitting diodes</li> <li>Solar cells</li> <li>Field-effect transistors</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | <ul> <li>Organic metals</li> <li>Light-emitting diodes</li> <li>Solar cells</li> <li>Field-effect transistors</li> </ul>                              |                                                  |  |
| Learning Outcomes / Competences                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                       |                                                  |  |
| The students:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                       |                                                  |  |
| <ul> <li>know the basic structural and electronic properties of organic semiconductors as well as the essential function of organic semiconductor devices,</li> <li>have acquired skills for the classification of the materials taking into account their specific features in the functioning of components,</li> <li>and have the competence to comprehend and attend to current problems in the field of organic electronics.</li> <li>Integrated acquirement of soft skills: practicing technical English, working with English specialist literature, ability to interpret experimental results</li> </ul> |                                                                                                                                                       |                                                  |  |
| Workload:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                       |                                                  |  |
| Total: 180 h                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                       |                                                  |  |
| 60 h lecture and exercise course (atte                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ndance)                                                                                                                                               |                                                  |  |
| 40 h studying of course content tinda                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | provided materials (self-study)                                                                                                                       |                                                  |  |
| 40 h studying of course content using literarture (self-study)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                       |                                                  |  |
| Conditions:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                       |                                                  |  |
| It is strongly recommended to complete the module solid-state physics first. In addition, knowledge of molecular physics is desired.                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                       |                                                  |  |
| Frequency: Sommersemester                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Recommended Semester:<br>from 2.                                                                                                                      | Minimal Duration of the Module:<br>1 semester[s] |  |
| Contact Hours:<br>5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Repeat Exams Permitted:<br>according to the examination<br>regulations of the study program                                                           |                                                  |  |
| Parts of the Module                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                       |                                                  |  |
| Part of the Module: Organic Semico                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | onductors                                                                                                                                             |                                                  |  |

# Mode of Instruction: lecture

Lecturers: Prof. Dr. Wolfgang Brütting

# Language: English

Contact Hours: 3

#### Learning Outcome:

see module description

# Contents:

see module description

## Literature:

- M. Schwoerer, H. Ch. Wolf: Organic Molecular Solids (Wiley-VCH)
- W. Brütting: Physics of Organic Semiconductors (Wiley-VCH)
- A. Köhler, H. Bässler: Electronic Processes in Organic Semiconductors (Wiley-VCH)
- S.R. Forrest: Organic Electronics (Oxford Univ. Press)

#### Part of the Module: Organic Semiconductors (Tutorial)

Mode of Instruction: exercise course

Language: English

Contact Hours: 2

#### Examination

# Organic Semiconductors

written exam / length of examination: 60 minutes, graded

#### **Examination Prerequisites:**

Organic Semiconductors

| Module PHM-0060: Low Temper<br>Low Temperature Physics                                                                                                                                                                                                                                                                  | rature Physics                                                                                                                                                                                                      | 6 ECTS/LP                                                           |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------|
| Version 1.2.0 (since WS09/10)<br>Person responsible for module: Prof.                                                                                                                                                                                                                                                   | Dr. Philipp Gegenwart                                                                                                                                                                                               |                                                                     |
| Contents                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                     |                                                                     |
| Introduction                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                     |                                                                     |
| <ul> <li>Properties of matter at low temp</li> </ul>                                                                                                                                                                                                                                                                    | peratures                                                                                                                                                                                                           |                                                                     |
| <ul> <li>Cryoliquids and superfluidity</li> </ul>                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                     |                                                                     |
| Cryogenic engineering                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                     |                                                                     |
| Thermometry                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                     |                                                                     |
| <ul> <li>Quantum transport, criticality ar</li> </ul>                                                                                                                                                                                                                                                                   | nd entanglement in matter                                                                                                                                                                                           |                                                                     |
| Learning Outcomes / Competences<br>The students:<br>• know the basic properties of ma<br>• have acquired the theoretical kn<br>• and know how to experimentall<br>Workload:<br>Total: 180 h<br>20 h studying of course content using<br>20 h studying of course content using<br>60 h lecture and exercise course (atte | s:<br>atter at low temperatures and the corresp<br>nowledge to perform low-temperature me<br>y investigate current problems in low-tem<br>provided materials (self-study)<br>l literarture (self-study)<br>endance) | onding experimental techniques,<br>asurements,<br>perature physics. |
| 80 h studying of course content throu                                                                                                                                                                                                                                                                                   | gh exercises / case studies (self-study)                                                                                                                                                                            |                                                                     |
| Conditions:<br>Physik IV - Solid-state physics                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                     |                                                                     |
| Frequency: each winter semester                                                                                                                                                                                                                                                                                         | Recommended Semester:<br>from 2.                                                                                                                                                                                    | Minimal Duration of the Module:<br>1 semester[s]                    |
| Contact Hours:<br>4                                                                                                                                                                                                                                                                                                     | Repeat Exams Permitted:<br>according to the examination<br>regulations of the study program                                                                                                                         |                                                                     |
| Parts of the Module                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                     |                                                                     |
| Part of the Module: Low Temperatu<br>Mode of Instruction: lecture<br>Language: English                                                                                                                                                                                                                                  | ire Physics                                                                                                                                                                                                         |                                                                     |

Contact Hours: 3

# Learning Outcome:

see module description

## Contents:

- Introduction (temperature scale, history of low temperature physics)
- Properties of matter at low temperatures (specific heat, thermal expansion, electrical resistance, thermal conductivity)
- Cryoliquids and superfluidity (nitrogen, hydrogen, 4-He and 3-He: phase diagrams, superfluidity)
- Cryogenic engineering (liquefaction of gases, helium cryostats, dilution refrigerator, adiabatic demagnetization, further techniques)
- · Thermometry (primary and secondary thermometers at different temperature regimes)
- Quantum Matter (quantum Transport, Quantum phase transitions, Quantum spin liquids)

#### Literature:

- C. Enss, S. Hunklinger, Tieftemperaturphysik (Springer)
- F. Pobell, Matter and Methods at Low Temperatures (Springer)

#### Assigned Courses:

Low Temperature Physics (lecture)

Part of the Module: Low Temperature Physics (Tutorial)

Mode of Instruction: exercise course

Language: English

Contact Hours: 1

Assigned Courses:

Low Temperature Physics (Tutorial) (exercise course)

#### Examination

Low Temperature Physics

oral exam / length of examination: 30 minutes, graded

**Examination Prerequisites:** 

Low Temperature Physics

| Module PHM-0068: Spintronics<br>Spintronics                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                             | 6 ECTS/LP                                        |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|--------------------------------------------------|
| Version 1.7.0 (since SoSe14)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | German Hammerl                                                                              |                                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | German nanmen                                                                               |                                                  |
| <ul> <li>Contents:</li> <li>Basic micromagnetic interactions (exchange, anisotropy, DMI, stray fields, external fields) and where they come from</li> <li>Emergence of spin textures such as domain walls and bubbles/skyrmions</li> <li>Torques acting on the local magnetization (magnetic field torque, current in-plane spin-transfer torque, spin-Hall effect and spin-orbit torques)</li> <li>Switching</li> <li>Motion of spin textures, 1D model and Thiele equation</li> <li>Magneto-resistance and Hall effects and their utility in electrical readout</li> <li>Ultrafast effects</li> <li>Device applications</li> </ul>                                                                        |                                                                                             |                                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                             |                                                  |
| Learning Outcomes / Competences:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                             |                                                  |
| <ul> <li>know the fundamental interactions in magnetic materials, the basic spintronic effects, and the related device structures,</li> <li>have the competence to deal with current problems in the field of spintronics largely autonomously,</li> <li>are able to choose materials in order to achieve demanding properties in spintronic applications,</li> <li>are able to design device components to achieve spin polarization,</li> <li>acquire scientific skills in finding and understanding current literature dealing with spintronic devices and applications, identifying suitable materials and material combinations with respect to their applicability for spintronic devices.</li> </ul> |                                                                                             |                                                  |
| Workload:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                             |                                                  |
| Total: 180 h<br>60 h lecture and exercise course (attendance)<br>20 h studying of course content using provided materials (self-study)<br>80 h studying of course content through exercises / case studies (self-study)<br>20 h studying of course content using literarture (self-study)                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                             |                                                  |
| Conditions:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                             |                                                  |
| none                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                             |                                                  |
| Frequency: every 3rd semester                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Recommended Semester:<br>from 2.                                                            | Minimal Duration of the Module:<br>1 semester[s] |
| Contact Hours:<br>4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Repeat Exams Permitted:<br>according to the examination<br>regulations of the study program |                                                  |

## Parts of the Module

Part of the Module: Spintronics

Mode of Instruction: lecture

Language: English

Frequency: each summer semester

Contact Hours: 3

#### Learning Outcome:

see module description

## Contents:

see module description

#### Literature:

- N. W. Ashcroft, N. D. Mermin, Solid State Physics, Cengage Learning (2011), ISBN: 81-315-0052-7
- C. Felser, G. H. Hechter, Spintronics From Materials to Devices, Springer (2013), ISBN: 978-90-481-3831-9
- S. Bandyopadhyay, M. Cahay, Introduction to Spintronics, CRC Press (2008), ISBN: 978-0-9493-3133-6

Part of the Module: Spintronics (Tutorial) Mode of Instruction: exercise course

Language: English

Frequency: each summer semester

Contact Hours: 1

# Examination

Spintronics

written exam / length of examination: 90 minutes, graded

Examination Prerequisites:

Spintronics

| Module PHM-0066: Superconduc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ctivity                                                                                     | 6 ECTS/LP                                        |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|--------------------------------------------------|
| Superconductivity                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                             |                                                  |
| Version 1.0.0 (since WS11/12)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                             | ·                                                |
| Person responsible for module: Prof. I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Dr. Philipp Gegenwart                                                                       |                                                  |
| Contents: <ul> <li>Introductory Remarks and Literature</li> <li>History and Main Properties of the Superconducting State, an Overview</li> <li>Phenomenological Thermodynamics and Electrodynamics of the SC</li> <li>Ginzburg-Landau Theory</li> <li>Microscopic Theories</li> <li>Fundamental Experiments on the Nature of the Superconducting State</li> <li>Josephson-Effects</li> <li>High Temperature Superconductors</li> <li>Application of Superconductors</li> </ul>                                                                                               |                                                                                             |                                                  |
| Learning Outcomes / Competences:<br>The students:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                             |                                                  |
| <ul> <li>will get an introduction to superconductivity,</li> <li>by a presentation of experimental results they will learn the fundamental properties of the superconducting state,</li> <li>are informed about the most important technical applications of superconductivity.</li> <li>Special attention will be drawn to the basic concepts of the main phenomeno-logical and microscopic theories of the superconducting state, to explain the experimental observations.</li> <li>For self-studies a comprehensive list of further reading will be supplied.</li> </ul> |                                                                                             |                                                  |
| Workload:<br>Total: 180 h<br>60 h lecture and exercise course (attendance)<br>80 h studying of course content through exercises / case studies (self-study)<br>20 h studying of course content using literarture (self-study)<br>20 h studying of course content using provided materials (self-study)                                                                                                                                                                                                                                                                       |                                                                                             |                                                  |
| <ul> <li>Conditions:</li> <li>Physik IV – Solid-state physics</li> <li>Theoretical physics I-III</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                             |                                                  |
| Frequency: each summer semester not in summer term 2023                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Recommended Semester:<br>from 2.                                                            | Minimal Duration of the Module:<br>1 semester[s] |
| Contact Hours:<br>4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Repeat Exams Permitted:<br>according to the examination<br>regulations of the study program |                                                  |
| Parts of the Module                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                             |                                                  |
| Part of the Module: Superconductivity<br>Mode of Instruction: lecture<br>Language: English                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                             |                                                  |

Contact Hours: 4

Learning Outcome:

see module description

# Contents:

see module description
- W. Buckel, Supraleitung, 5. Auflage (VCH, Weinheim, 1994)
- W. Buckel und R. Kleiner, Supraleitung, 6. Auflage (WILEY-VCH, Weinheim, 2004)
- M. Tinkham, Introduction to Superconductivity, 2nd Edition (McGraw-Hill, Inc., New York, 1996, Reprint by Dover Publications Inc. Miniola , 2004)
- Weitere Literatur wird in der Vorlesung angegeben

### Examination

Superconductivity

oral exam / length of examination: 30 minutes, graded

Examination Prerequisites:

Superconductivity

| Module PHM-0069: Applied Mag<br>Applied Magnetic Materials and Metho                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | netic Materials and Methods                                                                                                                                                                                                                       | 6 ECTS/LP                                               |  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------|--|
| Version 1.1.0 (since WS14/15)<br>Person responsible for module: Prof. Dr. Manfred Albrecht                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                   |                                                         |  |
| Person responsible for module: Prof. L<br>Contents:<br>Basics of magnetism<br>Ferrimagnets, permanent magnet<br>Magnetic nanoparticles<br>Superparamagnetism<br>Exchange bias effect<br>Magnetoresistance, sensors<br>Experimental methods (e.g. Möl<br>Learning Outcomes / Competences<br>The students know the basic ter<br>get a profound understanding of<br>acquire the ability to describe qu<br>mathematical descriptions of physical<br>Prof. Learning Outcomes (Prof. 1)<br>Prof. 1 | Dr. Manfred Albrecht<br>ets<br>Beauer Spectroscopy, mu-SR)<br>:<br>ms and concepts of magnetism,<br>basic physical relations and their applicated<br>valitative observations, interpret quantitative<br>spical effects of chosen magnetic materia | itions,<br>ive measurements, and develop<br>il systems. |  |
| <ul> <li>Integrated acquirement of soft skills: autonomous working with specialist literature in English, acquisition of presentation techniques, capacity for teamwork, ability to document experimental results, and interdisciplinary thinking and working</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                   |                                                         |  |
| Workload:<br>Total: 180 h<br>20 h studying of course content using<br>20 h studying of course content using<br>80 h studying of course content throug<br>60 h lecture and exercise course (atte                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | provided materials (self-study)<br>literarture (self-study)<br>gh exercises / case studies (self-study)<br>ndance)                                                                                                                                |                                                         |  |
| Conditions:<br>Basics in solid state physics                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                   |                                                         |  |
| Frequency: each winter semester                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Recommended Semester:<br>from 1.                                                                                                                                                                                                                  | Minimal Duration of the Module:<br>1 semester[s]        |  |
| Contact Hours:<br>4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Repeat Exams Permitted:<br>according to the examination<br>regulations of the study program                                                                                                                                                       |                                                         |  |
| Parts of the Module                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                   |                                                         |  |
| Part of the Module: Applied Magnet                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ic Materials and Methods                                                                                                                                                                                                                          |                                                         |  |

Mode of Instruction: lecture

Language: English

# Contact Hours: 3

Learning Outcome:

see module description

### Contents:

see module description

### Literature:

Stephan Bundell, Magnetism in Condensed Matter, Oxford University Press, ISBN: 0-19-850591-4 (Pbk)

J.M.C. Coey, Magnetism and Magnetic Materials, Cambridge University Press, ISBN: 978-0-521-81614-4 (hardback)

Part of the Module: Applied Magnetic Materials and Methods (Tutorial)

Mode of Instruction: exercise course Language: English Contact Hours: 1

## Examination

## Applied Magnetic Materials and Methods

oral exam / length of examination: 30 minutes, graded

# Examination Prerequisites:

Applied Magnetic Materials and Methods

| Module PHM-0198: Special Topics in Materials Science (Foreign<br>Institution)<br>Special Topics in Materials Science (Foreign Institution) |                                                                                             | 20 ECTS/LP                                                    |
|--------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|---------------------------------------------------------------|
| Version 1.0.0 (since WS15/16)<br>Person responsible for module: Prof. Dr. Ferdinand Haider                                                 |                                                                                             |                                                               |
| Conditions:<br>studies at an international partner institution                                                                             |                                                                                             | Credit Requirements:<br>written exam, oral exam, report, etc. |
| Frequency: each semester         Recommended Semester:                                                                                     |                                                                                             | Minimal Duration of the Module:<br>semester[s]                |
|                                                                                                                                            | Repeat Exams Permitted:<br>according to the examination<br>regulations of the study program |                                                               |

# Parts of the Module Part of the Module: Special Topics in Materials Science (Foreign Institution) Language: English

### Examination

### Special Topics in Materials Science (Foreign Institution)

module exam, written exam, oral exam, report, etc., graded

## Examination Prerequisites:

Special Topics in Materials Science (Foreign Institution)

| Module PHM-0054: Chemical Phy                                         | vsics II                                        | 6 ECTS/LP                              |  |
|-----------------------------------------------------------------------|-------------------------------------------------|----------------------------------------|--|
| Chemical Physics II                                                   |                                                 |                                        |  |
| Version 1.4.0 (since WS09/10 to WS22/23)                              |                                                 |                                        |  |
| Person responsible for module: Prof. Dr. Wolfgang Scherer             |                                                 |                                        |  |
| PD Dr. Georg Eickerling                                               |                                                 |                                        |  |
| Contents:                                                             |                                                 |                                        |  |
| Introduction to computational che                                     | Introduction to computational chemistry         |                                        |  |
| Hartree-Fock Theory     DET is a putchell                             |                                                 |                                        |  |
| Prediction of reaction mechanism                                      | 21                                              |                                        |  |
| <ul> <li>calculation of physical and chemi</li> </ul>                 | cal properties                                  |                                        |  |
| Learning Outcomes / Competences:                                      |                                                 |                                        |  |
| The students:                                                         |                                                 |                                        |  |
| <ul> <li>know the basic quantum chomical</li> </ul>                   | l mothods of chamical physics to interpr        | at the electronic structures in        |  |
| molecules and solid-state compo                                       | unds                                            |                                        |  |
| <ul> <li>have therefore the competence to</li> </ul>                  | o autonomously perform simple quantum           | chemical calculations using Hartree-   |  |
| Fock and Density Functional The                                       | ory (DFT) and to interpret the electronic       | structure of functional molecules and  |  |
| materials with regard to their cher                                   | mical and physical properties                   |                                        |  |
| <ul> <li>Integrated acquirement of soft ski</li> </ul>                | ills: ability to specialize in a scientific top | ic and to apply the acquired knowledge |  |
| for solving scientific problems.                                      |                                                 |                                        |  |
| Remarks:                                                              |                                                 |                                        |  |
| It is possible for students to do quantum                             | n chemical calculations autonomously ar         | nd analyze electronical structures of  |  |
| molecules on a computer cluster within                                | the scope of the tutorial.                      |                                        |  |
| Workload:                                                             |                                                 |                                        |  |
| Total: 180 h                                                          |                                                 |                                        |  |
| 60 h lecture and exercise course (atten                               | dance)                                          |                                        |  |
| 20 h studying of course content unoug                                 | terarture (self-study)                          |                                        |  |
| 20 h studying of course content using provided materials (self-study) |                                                 |                                        |  |
| Conditions                                                            |                                                 |                                        |  |
| It is highly recommended to complete the                              | ne module Chemical Physics I first.             |                                        |  |
| Frequency: each summer semester                                       | Recommended Semester:                           | Minimal Duration of the Module:        |  |
| not in summer term 23                                                 | from 2.                                         | 1 semester[s]                          |  |
| Contact Hours:                                                        | Repeat Exams Permitted:                         |                                        |  |
| 4                                                                     | according to the examination                    |                                        |  |
|                                                                       | regulations of the study program                |                                        |  |
| Parts of the Module                                                   |                                                 |                                        |  |
| Part of the Module: Chemical Physic                                   | s                                               |                                        |  |
| Mode of Instruction: lecture                                          | 5 11                                            |                                        |  |

Language: English

Contact Hours: 3

Learning Outcome:

see module description

- I. N. Levine, Quantum Chemistry, Pearson, 7th ed 2013.
- A. Szabo, N. S. Ostlund, Modern Quantum Chemistry, Dover, 1996 (EbookCentral ebook).
- E. G. Lewars, Computational Chemistry, Springer, 2011.
- D. C. Young, Computational Chemistry: A practical guide for applying techniques to real world problems, Wiley ebook, **2002**.
- R. A. van Santen, Ph. Sautet, Computational Methods in Catalysis and Materials Science, Wiley ebook, 2009.
- P. Popelier, Atoms in Molecules: An Introduction, Pearson Education Limited, 2000.
- A. Frisch, Exploring Chemistry with Electronic Structure Methods, Gaussian Inc. Pittsburg, PA.

### Part of the Module: Chemical Physics II (Tutorial)

Mode of Instruction: exercise course

Language: English

### Contact Hours: 1

#### Learning Outcome:

see module description

### Examination

## Chemical Physics II

written exam / length of examination: 90 minutes, graded

#### Examination Prerequisites:

Chemical Physics II

| Version 1.0.0 (since SoSe15)<br>Person responsible for module: Prof. Dr. Dirk Volkmer<br>Dr. Hana Bunzen                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                |  |  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Contents:                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                |  |  |
| A) Basics of coordination Chemistry                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                |  |  |
| <ul> <li>Historical development of coordination chemistry [2]</li> <li>Structures and nomenclature rules [2]</li> <li>Chemical bonds in transition metal coordination compounds [3]</li> <li>Stability of transition metal coordination compounds [2]</li> <li>Characteristic reactions [3]</li> </ul>                                                                                                                                                           |                                                                                                                                                                                                                                |  |  |
| B) Selected classes of functional materials                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                |  |  |
| <ul> <li>Bioinorganic chemistry [3]</li> <li>Coordination polymers / metal-organic frameworks [3]</li> <li>Coordination compounds in medical applications [3]</li> <li>Photochemistry of coordination compounds [3]</li> </ul>                                                                                                                                                                                                                                   | <ul> <li>Bioinorganic chemistry [3]</li> <li>Coordination polymers / metal-organic frameworks [3]</li> <li>Coordination compounds in medical applications [3]</li> <li>Photochemistry of coordination compounds [3]</li> </ul> |  |  |
| Learning Outcomes / Competences:<br>The students                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                |  |  |
| <ul> <li>shall acquire knowledge about concepts of chemical bonding in coordination chemistry (main emphasis: d-block transition metal compounds),</li> <li>broaden their capabilities to interpret UV/vis absorption spectra and to predict stability and reactivity of coordination compounds,</li> <li>learn how to transfer concepts of coordination chemistry onto topics of materials sciences.</li> <li>Integrated acquirement of soft skills.</li> </ul> |                                                                                                                                                                                                                                |  |  |
| Remarks:<br>ELECTIVE COMPULSORY MODULE                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                |  |  |
| Workload:         Total: 180 h         60 h lecture and exercise course (attendance)         20 h studying of course content using literarture (self-study)         20 h studying of course content using provided materials (self-study)         80 h studying of course content through exercises / case studies (self-study)                                                                                                                                  |                                                                                                                                                                                                                                |  |  |
| Conditions:<br>Recommended: The lecture course is based on the courses "Chemistry I",<br>"Chemistry II"                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                |  |  |
| Frequency: each summer semester Recommended Semester:<br>from 2.                                                                                                                                                                                                                                                                                                                                                                                                 | Minimal Duration of the Module:<br>1 semester[s]                                                                                                                                                                               |  |  |
| Contact Hours:     Repeat Exams Permitted:       4     according to the examination regulations of the study program                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                |  |  |

### Part of the Module: Coordination Materials

Mode of Instruction: lecture

Language: English

Contact Hours: 3

- Joan Ribas Gisbert, Coordination Chemistry, Wiley-VCH
- Lutz H. Gade, Koordinationschemie, Wiley-VCH
- · As well as selected reviews and journals articles cited on the slides

Part of the Module: Coordination Materials (Tutorial)

Mode of Instruction: exercise course Language: English Contact Hours: 1

#### Examination

**Coordination Materials** 

written exam / length of examination: 90 minutes, graded

**Examination Prerequisites:** 

**Coordination Materials** 

| Module PHM-0113: Advanced So<br>Advanced Solid State Materials                                                                                                                                                                                                                                                                                   | lid State Materials                                                                                                                     | 6 ECTS/LP                                                                                                          |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------|
| Version 1.2.0 (since WS10/11)<br>Person responsible for module: Prof. Dr. Henning Höppe                                                                                                                                                                                                                                                          |                                                                                                                                         |                                                                                                                    |
| Contents:<br>• Repitition of concepts<br>• Novel silicate-analogous materia<br>• Luminescent materials<br>• Pigments<br>• Heterogeneous catalysis<br>Learning Outcomes / Competences:<br>• The students are aware of correl<br>• acquire skills to predict the prope<br>• gain competence to evaluate the<br>• will know how to measure the pro- | Is<br>ations between composition, structures a<br>erties of chemical compounds, based on<br>potential of functional materials for futur | and properties of functional materials,<br>their composition and structures,<br>re technological developments, and |
| will know how to measure the properties of these materials.     Integrated acquirement of soft skills                                                                                                                                                                                                                                            |                                                                                                                                         |                                                                                                                    |
| Total: 180 h<br>60 h lecture and exercise course (attendance)<br>20 h studying of course content using literarture (self-study)<br>80 h studying of course content through exercises / case studies (self-study)<br>20 h studying of course content using provided materials (self-study)                                                        |                                                                                                                                         |                                                                                                                    |
| Conditions:<br>Contents of the modules Chemie I, and Chemie II or Festkörperchemie<br>(Bachelor Physik, Bachelor Materialwissenschaften)                                                                                                                                                                                                         |                                                                                                                                         |                                                                                                                    |
| Frequency:                                                                                                                                                                                                                                                                                                                                       | Recommended Semester:<br>from 2.                                                                                                        | Minimal Duration of the Module:<br>1 semester[s]                                                                   |
| Contact Hours:       Repeat Exams Permitted:         4       according to the examination         regulations of the study program                                                                                                                                                                                                               |                                                                                                                                         |                                                                                                                    |
| Parts of the Module                                                                                                                                                                                                                                                                                                                              |                                                                                                                                         |                                                                                                                    |
| Part of the Module: Advanced Solid<br>Mode of Instruction: lecture<br>Language: English<br>Contact Hours: 3                                                                                                                                                                                                                                      | State Materials                                                                                                                         |                                                                                                                    |

### Learning Outcome:

see module description

#### Contents:

see module description

### Literature:

- A. West, Solid State Chemistry and Its Applications
- L. Smart, E. Moore, Solid State Chemistry
- Scripts Solid State Chemistry and Chemistry I and II

### Part of the Module: Advanced Solid State Materials (Tutorial)

Mode of Instruction: exercise course

Language: English

Contact Hours: 1

# Contents:

see module description

### Literature:

- A. West, Solid State Chemistry and Its Applications
- L. Smart, E. Moore, Solid State Chemistry
- Scripts Solid State Chemistry and Chemistry I and II

### Examination

### Advanced Solid State Materials

written exam / length of examination: 90 minutes, graded

## **Examination Prerequisites:**

Advanced Solid State Materials

| Module PHM-0217: Advance<br>Techniques<br>Advanced X-ray and Neutron Diff                                                                                                                      | ed X-ray and Neutron Diffraction                                                                                                                                                                    | 6 ECTS/LP                                                                 |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------|
| Version 1.3.0 (since SoSe17 to S<br>Person responsible for module: P<br>PD Dr. Georg Eickerling                                                                                                | oSe23)<br>Irof. Dr. Wolfgang Scherer                                                                                                                                                                |                                                                           |
| Contents:<br>Subjects of the lecture are advan                                                                                                                                                 | ced X-ray and neutron diffraction technique                                                                                                                                                         | s:                                                                        |
| <ul> <li>The failure of the standard</li> <li>Beyond the standard mode</li> <li>How to obtain and analyze</li> <li>How to derive chemical and</li> <li>Applications of joined X-ray</li> </ul> | Independent Atom <i>M</i> odel (IAM) in X-ray dif<br>I: The multipolar model<br>experimental charge densities<br>d physical properties from diffraction data<br>and neutron diffraction experiments | fraction                                                                  |
| Learning Outcomes / Competer<br>The students:                                                                                                                                                  | nces:                                                                                                                                                                                               |                                                                           |
| <ul> <li>gain basic theoretical know<br/>neutron diffraction data</li> <li>know the basics of the Qua</li> <li>are competent to analyze the<br/>properties of materials</li> </ul>             | ledge on the reconstruction of accurate ele<br>antum Theory of Atoms in Molecules<br>the topology of the electron density and corr                                                                  | ctron density maps from X-ray and elate it with the physical and chemical |
| Remarks:<br>ELECTIVE COMPULSORY MOD                                                                                                                                                            | DULE                                                                                                                                                                                                |                                                                           |
| Workload:<br>Total: 180 h<br>20 h studying of course content u<br>80 h studying of course content th<br>20 h studying of course content u<br>60 h lecture and exercise course                  | sing provided materials (self-study)<br>nrough exercises / case studies (self-study)<br>sing literarture (self-study)<br>(attendance)                                                               |                                                                           |
| Conditions:<br>It is recommended to complete th                                                                                                                                                | e Module PHM-0053 Chemical Physics I.                                                                                                                                                               |                                                                           |
| Frequency: irregular                                                                                                                                                                           | Recommended Semester:<br>from 2.                                                                                                                                                                    | Minimal Duration of the Module:<br>1 semester[s]                          |
| Contact Hours:<br>4                                                                                                                                                                            | Repeat Exams Permitted:<br>according to the examination<br>regulations of the study program                                                                                                         |                                                                           |
| Parts of the Module                                                                                                                                                                            |                                                                                                                                                                                                     |                                                                           |

Part of the Module: Advanced X-ray and Neutron Diffraction Techniques

Mode of Instruction: lecture

Language: English

Contact Hours: 3

- 1. C. Giacovazzo et al., Fundamentals of Crystallography, Oxford Univ. Press, 2011.
- 2. P. Coppens, X-ray Charge Densities and Chemical Bonding, Oxford Univ. Press, 1997.
- 3. P. Popelier, Atoms in Molecules: An Introduction, Longman, 1999.
- 4. P. Coppens, X-ray Charge Densities and Chemical Bonding, Oxford Univ. Press, 1997.
- 5. P. Popelier, Atoms in Molecules: An Introduction, Longman, 1999.

Part of the Module: Advanced X-ray and Neutron Diffraction Techniques (Tutorial) Mode of Instruction: exercise course Language: English Contact Hours: 1

#### Examination

Advanced X-ray and Neutron Diffraction Techniques

written exam / length of examination: 90 minutes, graded

### **Examination Prerequisites:**

Advanced X-ray and Neutron Diffraction Techniques

| Module PHM-0114: Porous Func                           | tional Materials                           | 6 ECTS/LP                             |  |
|--------------------------------------------------------|--------------------------------------------|---------------------------------------|--|
| Porous Functional Materials                            | Porous Functional Materials                |                                       |  |
| Version 1.0.0 (since SS11 to WS22/23)                  |                                            |                                       |  |
| Person responsible for module: Prof. Dr. Dirk Volkmer  |                                            |                                       |  |
| Contents:                                              |                                            |                                       |  |
| <ul> <li>Overview and historical developr</li> </ul>   | Overview and historical developments       |                                       |  |
| <ul> <li>Structural families of porous fram</li> </ul> | neworks                                    |                                       |  |
| <ul> <li>Synthesis strategies</li> </ul>               |                                            |                                       |  |
| <ul> <li>Adsorption and diffusion</li> </ul>           |                                            |                                       |  |
| <ul> <li>Thermal analysis methods</li> </ul>           |                                            |                                       |  |
| <ul> <li>Catalytic properties</li> </ul>               |                                            |                                       |  |
| <ul> <li>Advanced applications and curre</li> </ul>    | nt trends                                  |                                       |  |
| Learning Outcomes / Competences:                       |                                            |                                       |  |
| <ul> <li>The students shall acquire knowl</li> </ul>   | edge about design principles and synthe    | esis of porous functional materials,  |  |
| <ul> <li>broaden their capabilities to char</li> </ul> | acterize porous solid state materials with | n special emphasis laid upon sorption |  |
| and thermal analysis,                                  |                                            |                                       |  |
| <ul> <li>become introduced into typical te</li> </ul>  | chnical applications of porous solids.     |                                       |  |
| <ul> <li>Integrated acquirement of soft sk</li> </ul>  | ills                                       |                                       |  |
| Remarks:                                               |                                            |                                       |  |
| This module and the exams for this                     | module will be offered in WS 2022/23       | for the last time !                   |  |
| Workload:                                              |                                            |                                       |  |
| Total: 180 h                                           |                                            |                                       |  |
| 60 h lecture and exercise course (atter                | idance)                                    |                                       |  |
| 80 h studying of course content throug                 | h exercises / case studies (self-study)    |                                       |  |
| 20 h studying of course content using I                | iterarture (self-study)                    |                                       |  |
| 20 h studying of course content using p                | provided materials (self-study)            |                                       |  |
| Conditions:                                            |                                            | Credit Requirements:                  |  |
| participation in the course Materials Chemistry        |                                            | one written examination, 90 min       |  |
| Frequency: each winter semester                        | Recommended Semester:                      | Minimal Duration of the Module:       |  |
|                                                        | from 1.                                    | 1 semester[s]                         |  |
| Contact Hours:                                         | Repeat Exams Permitted:                    |                                       |  |
| 4 according to the examination                         |                                            |                                       |  |
| regulations of the study program                       |                                            |                                       |  |
| Parts of the Module                                    |                                            |                                       |  |
| Part of the Module: Porous Function                    | al Materials                               |                                       |  |

Mode of Instruction: lecture

Language: English

**Contact Hours:** 4

## Contents:

see module description

Literature:

- Paul A. Wright, Microporous Framework Solids (RSC Materials Monographs, 2008)
- · selected reviews and journal articles cited on the slides

### Examination

Porous Functional Materials

written exam / length of examination: 90 minutes, graded

## Examination Prerequisites:

Porous Functional Materials

| Module PHM-0167: Oxidation and Corrosion                                                                                                                                          | 6 ECTS/LP                    |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------|
|                                                                                                                                                                                   |                              |
| Version 1.0.0 (since SoSe15)<br>Person responsible for module: Prof. Dr. Ferdinand Haider                                                                                         |                              |
| Contents:                                                                                                                                                                         |                              |
| Introduction                                                                                                                                                                      |                              |
| Review of thermodynamics                                                                                                                                                          |                              |
| Chemical equilibria                                                                                                                                                               |                              |
| Electrochemistry                                                                                                                                                                  |                              |
| Electrode kinetics                                                                                                                                                                |                              |
| High temperature oxidation                                                                                                                                                        |                              |
| Localized corrosion                                                                                                                                                               |                              |
| Shallow pit corrosion                                                                                                                                                             |                              |
| Pitting corrosion                                                                                                                                                                 |                              |
| Crevice corrosion                                                                                                                                                                 |                              |
| Stress corrosion cracking                                                                                                                                                         |                              |
| Fatigue corrosion                                                                                                                                                                 |                              |
| Erosion corrosion                                                                                                                                                                 |                              |
| Galvanic corrosion                                                                                                                                                                |                              |
| Water and seawater corrosion                                                                                                                                                      |                              |
| Corrosion monitoring                                                                                                                                                              |                              |
| Corrosion properties of specific materials                                                                                                                                        |                              |
| Specific corrosion problems in certain branches                                                                                                                                   |                              |
| Oil and Gas industry                                                                                                                                                              |                              |
| Automobile industry                                                                                                                                                               |                              |
| Food industry                                                                                                                                                                     |                              |
| Corrosion protection                                                                                                                                                              |                              |
| Passive layers                                                                                                                                                                    |                              |
| Reaction layers (Diffusion layers)     Coatings (organic, inorganic)                                                                                                              |                              |
| Cathodic, anodic protection                                                                                                                                                       |                              |
| • Inhibitors                                                                                                                                                                      |                              |
| Learning Outcomes / Competences:                                                                                                                                                  |                              |
| The students:                                                                                                                                                                     |                              |
| know the the fundamental basics, mechanics, types of corrosion process                                                                                                            | es and their electrochemical |
| explanation                                                                                                                                                                       |                              |
| <ul> <li>obtain the skill to understand typical electrochemical quantification of corr</li> <li>aquire the competence to assess, corrosion phenomena from typical darr</li> </ul> | osion processes.             |
| Remarks:                                                                                                                                                                          |                              |
| Scheduled every second summer semster.                                                                                                                                            |                              |
| Workload:                                                                                                                                                                         |                              |
| Total: 180 h                                                                                                                                                                      |                              |
| 60 h lecture and exercise course (attendance)                                                                                                                                     |                              |

| 120 h studying of course content using provided materials (self-study)                                        |                                                                                             |                                                  |
|---------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|--------------------------------------------------|
| <b>Conditions:</b><br>Recommended: good knowledge in materials science, basic knowledge in physical chemistry |                                                                                             | Credit Requirements:<br>written exam (90 min)    |
| Frequency: each summer semester alternating with PHM-0168                                                     | Recommended Semester:<br>from 3.                                                            | Minimal Duration of the Module:<br>1 semester[s] |
| Contact Hours:<br>4                                                                                           | Repeat Exams Permitted:<br>according to the examination<br>regulations of the study program |                                                  |

### Parts of the Module

### Part of the Module: Oxidation and Corrosion

Mode of Instruction: lecture

Language: English

Frequency: each winter semester

Contact Hours: 3

### Literature:

Schütze: Corrosion and Environmental Degradation

Assigned Courses:

**Oxidation and Corrosion** (lecture)

#### Part of the Module: Oxidation and Corrosion (Tutorial)

Mode of Instruction: exercise course

Language: English

Frequency: each winter semester

Contact Hours: 1

Assigned Courses:

Oxidation and Corrosion (Tutorial) (exercise course)

### Examination

Oxidation and Corrosion

written exam / length of examination: 90 minutes, graded

### **Examination Prerequisites:**

Oxidation and Corrosion

| Module PHM-0198: Special Topics in Materials Science (Foreign<br>Institution)<br>Special Topics in Materials Science (Foreign Institution) |                                                                                             | 20 ECTS/LP                                                    |
|--------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|---------------------------------------------------------------|
| Version 1.0.0 (since WS15/16)<br>Person responsible for module: Prof. Dr. Ferdinand Haider                                                 |                                                                                             |                                                               |
| Conditions:<br>studies at an international partner institution                                                                             |                                                                                             | Credit Requirements:<br>written exam, oral exam, report, etc. |
| Frequency: each semester         Recommended Semester:                                                                                     |                                                                                             | Minimal Duration of the Module:<br>semester[s]                |
|                                                                                                                                            | Repeat Exams Permitted:<br>according to the examination<br>regulations of the study program |                                                               |

# Parts of the Module Part of the Module: Special Topics in Materials Science (Foreign Institution) Language: English

### Examination

### Special Topics in Materials Science (Foreign Institution)

module exam, written exam, oral exam, report, etc., graded

## Examination Prerequisites:

Special Topics in Materials Science (Foreign Institution)

| Module PHM-0218: Novel Method                                                                                                                                                                                                                                                            | Is in Solid State NMR                     | 6 ECTS/LP                                         |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------|---------------------------------------------------|
| Spectroscopy Novel Methods in Solid State NMR Spectroscopy                                                                                                                                                                                                                               |                                           |                                                   |
| Version 1.0.0 (since SoSe17)<br>Person responsible for module: Prof. Dr. Leo van Wüllen                                                                                                                                                                                                  |                                           |                                                   |
| Contents:                                                                                                                                                                                                                                                                                |                                           |                                                   |
| The physical basis of nuclear magnetic                                                                                                                                                                                                                                                   | resonance                                 |                                                   |
| Pulsed NMR methods; Fourier Transfo                                                                                                                                                                                                                                                      | rm NMR                                    |                                                   |
| Internal interactions                                                                                                                                                                                                                                                                    |                                           |                                                   |
| Magic Angle Spinning                                                                                                                                                                                                                                                                     |                                           |                                                   |
| Modern pulse sequences or how to obt                                                                                                                                                                                                                                                     | ain specific information about the struct | ure and dynamics of solid materials               |
| Recent highlights of the application of r                                                                                                                                                                                                                                                | nodern solid state NMR in materials scie  | ence                                              |
| Workload:                                                                                                                                                                                                                                                                                |                                           |                                                   |
| Total: 180 h                                                                                                                                                                                                                                                                             | ,                                         |                                                   |
| Conditions:<br>none                                                                                                                                                                                                                                                                      |                                           | Credit Requirements:<br>Bestehen der Modulprüfung |
| Frequency: each winter semester                                                                                                                                                                                                                                                          | Recommended Semester:                     | Minimal Duration of the Module:<br>1 semester[s]  |
| Contact Hours:                                                                                                                                                                                                                                                                           | Repeat Exams Permitted:                   |                                                   |
| 4                                                                                                                                                                                                                                                                                        | according to the examination              |                                                   |
|                                                                                                                                                                                                                                                                                          | regulations of the study program          |                                                   |
| Parts of the Module                                                                                                                                                                                                                                                                      |                                           |                                                   |
| Part of the Module: Novel Methods in Solid State NMR Spectroscopy<br>Mode of Instruction: lecture<br>Language: German                                                                                                                                                                    |                                           |                                                   |
| Contact Hours: 3                                                                                                                                                                                                                                                                         |                                           |                                                   |
| Assigned Courses:                                                                                                                                                                                                                                                                        |                                           |                                                   |
| Novel Methods in Solid State NMR S                                                                                                                                                                                                                                                       | pectroscopy (lecture)                     |                                                   |
| Part of the Module: Novel Methods in Solid State NMR Spectroscopy (Tutorial)<br>Mode of Instruction: exercise course<br>Language: German<br>Contact Hours: 1                                                                                                                             |                                           |                                                   |
| Literature:<br>1. M. H. Levitt, Spin Dynamics, John Wiley and Sons, Ltd., 2008.<br>2. H. Günther, NMR spectroscopy, Wiley 2001.<br>3. M.Duer, Introduction to Solid-State NMR spectroscopy, Blackwell Publishing Ltd., 2004.<br>4. D. Canet: NMR - concepts and methods, Springer, 1994. |                                           |                                                   |
| Assigned Courses:                                                                                                                                                                                                                                                                        |                                           |                                                   |
| Novel Methods in Solid State NMR Spectroscopy (Tutorial) (exercise course)                                                                                                                                                                                                               |                                           |                                                   |
| Examination                                                                                                                                                                                                                                                                              |                                           |                                                   |

Novel Methods in Solid State NMR Spectroscopy written exam / length of examination: 90 minutes, graded

| Module PHM-0164: Characterizat<br>Characterization of Composite Materia                                                                                                                                                                                                                                                                                       | ion of Composite Materials                                                                                       | 6 ECTS/LP                                        |  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------|--------------------------------------------------|--|
| Version 1.0.0 (since SoSe15)<br>Person responsible for module: Prof. Dr. Markus Sause                                                                                                                                                                                                                                                                         |                                                                                                                  |                                                  |  |
| Contents:<br>The following topics are presented:<br>Introduction to composite materia<br>Applications of composite materia<br>Mechanical testing                                                                                                                                                                                                              | als<br>als                                                                                                       |                                                  |  |
| Nondestructive testing                                                                                                                                                                                                                                                                                                                                        |                                                                                                                  |                                                  |  |
| Learning Outcomes / Competences:<br>The students:                                                                                                                                                                                                                                                                                                             | Learning Outcomes / Competences:<br>The students:                                                                |                                                  |  |
| <ul> <li>acquire knowledge in the field of materials testing and evaluation of composite materials.</li> <li>are introduced to important concepts in measurement techniques, and material models applied to composites.</li> <li>are able to independently acquire further information of the scientific topic using various forms of information.</li> </ul> |                                                                                                                  |                                                  |  |
| Workload:<br>Total: 180 h<br>20 h studying of course content using l<br>20 h studying of course content using p<br>60 h lecture and exercise course (atten<br>80 h studying of course content through                                                                                                                                                         | iterarture (self-study)<br>provided materials (self-study)<br>idance)<br>h exercises / case studies (self-study) |                                                  |  |
| Conditions:<br>Recommended: basic knowledge in materials science, particularly in<br>composite materials                                                                                                                                                                                                                                                      |                                                                                                                  |                                                  |  |
| Frequency: each summer semester                                                                                                                                                                                                                                                                                                                               | Recommended Semester:<br>from 2.                                                                                 | Minimal Duration of the Module:<br>1 semester[s] |  |
| Contact Hours:<br>4                                                                                                                                                                                                                                                                                                                                           | Repeat Exams Permitted:<br>according to the examination<br>regulations of the study program                      |                                                  |  |

## Parts of the Module

Part of the Module: Characterization of Composite Materials

## Mode of Instruction: lecture

Language: English

Contact Hours: 3

Literature:

- Morgan: Carbon fibers and their composites
- Henning, Moeller: Handbuch Leichtbau
- Schürmann: Konstruieren mit Faser-Kunststoff-Verbunden
- Neitzel, Mitschang: Handbuch Verbundwerkstoffe
- Dowling: Mechanical behaviour of materials
- Issler: Festigkeitslehre Grundlagen
- Landau, Lifschitz: Theoretische Physik Vol. 7

Further literature - actual scientific papers and reviews - will be announced at the beginning of the lecture.

### Part of the Module: Characterization of Composite Materials (Tutorial)

Mode of Instruction: exercise course

Language: English

Contact Hours: 1

## Literature:

see lecture

## Examination

### **Characterization of Composite Materials**

written exam / length of examination: 90 minutes, graded

## **Examination Prerequisites:**

Characterization of Composite Materials

| Module PHM-0163: Fiber Reinfo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | rced Composites: Processing and                                                                                                       | 6 ECTS/LP                                        |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------|
| Fiber Reinforced Composites: Proces                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | sing and Materials Properties                                                                                                         |                                                  |
| Version 1.2.0 (since SoSe15)<br>Person responsible for module: Dr. Ju                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | dith Moosburger-Will                                                                                                                  |                                                  |
| Contents:<br>Production of fibers (e.g. glass,<br>Physical and chemical propertie<br>Physical and chemical propertie<br>Semi-finished products<br>Composite production technolog<br>Application of fiber reinforced m                                                                                                                                                                                                                                                                                                                                                                                                                         | carbon, or ceramic fibers)<br>s of fibers and their precursor materials<br>s of commonly used polymeric and ceran<br>gies<br>aterials | nic matrix materials                             |
| Learning Outcomes / Competences<br>The students:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | :                                                                                                                                     |                                                  |
| <ul> <li>know the physical and chemical properties of fibers, matrices, and fiber-reinforced materials.</li> <li>know the basics of production technologies of fibers, polymeric, ceramic matrices, and fiber-reinforced materials.</li> <li>know the application areas of composite materials.</li> <li>have the competence to explain material properties of fibers, matrices, and composites.</li> <li>have the competence to choose the right materials according to application relevant conditions.</li> <li>are able to independently acquire further knowledge of the scientific topic using various forms of information.</li> </ul> |                                                                                                                                       |                                                  |
| Remarks:<br>ELECTIVE COMPULSORY MODULE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                       |                                                  |
| Workload:<br>Total: 180 h<br>80 h studying of course content throug<br>20 h studying of course content using<br>20 h studying of course content using<br>60 h lecture and exercise course (atte                                                                                                                                                                                                                                                                                                                                                                                                                                               | gh exercises / case studies (self-study)<br>literarture (self-study)<br>provided materials (self-study)<br>ndance)                    |                                                  |
| <b>Conditions:</b><br>Recommended: basic knowledge in m<br>organic chemistry                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | naterials science, basic lectures in                                                                                                  |                                                  |
| Frequency: each winter semester                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Recommended Semester:<br>from 1.                                                                                                      | Minimal Duration of the Module:<br>1 semester[s] |
| <b>Contact Hours:</b><br>4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Repeat Exams Permitted:<br>according to the examination<br>regulations of the study program                                           |                                                  |
| Parts of the Module                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1                                                                                                                                     | L                                                |

Part of the Module: Fiber Reinforced Composites: Processing and Materials Properties

Mode of Instruction: lecture

Language: English

Contact Hours: 3

- · Morgan: Carbon fibers and their composites
- Ehrenstein: Polymeric materials
- Krenkel: Ceramic Matrix Composites
- Henning, Moeller: Handbuch Leichtbau
- Schürmann: Konstruieren mit Faser-Kunstoff-Verbunden
- Neitzel, Mitschang: Handbuch Verbundwerkstoffe

Further litrature - actual scientific papers and reviews - will be announced at the beginning of the lecture.

#### **Assigned Courses:**

Fiber Reinforced Composites: Processing and Materials Properties (lecture)

Part of the Module: Fiber Reinforced Composites: Processing and Materials Properties (Tutorial)

Mode of Instruction: exercise course

Language: English

Contact Hours: 1

Literature:

see lecture

Assigned Courses:

Fiber Reinforced Composites: Processing and Materials Properties (Tutorial) (exercise course)

#### Examination

### Fiber Reinforced Composites: Processing and Materials Properties

written exam / length of examination: 90 minutes, graded

**Examination Prerequisites:** 

Fiber Reinforced Composites: Processing and Materials Properties

| Module PHM-0165: Introduction<br>Introduction to Mechanical Engineerin                                                                                                                                                                                                               | to Mechanical Engineering              | 6 ECTS/LF                                        |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|--------------------------------------------------|
| Version 1.0.0 (since SoSe15)<br>Person responsible for module: Prof. I<br>Dr Ing. Johannes Schilp                                                                                                                                                                                    | Dr. Siegfried Horn                     |                                                  |
| Contents:                                                                                                                                                                                                                                                                            |                                        |                                                  |
| The following topics are treated:                                                                                                                                                                                                                                                    |                                        |                                                  |
| <ul> <li>Statics and dynamics of objects</li> <li>Transmissions and mechanisms</li> <li>Tension, shear and bending modeling</li> <li>Hydrostatics</li> <li>Hydrodynamics</li> <li>Strength of materials and solid measurement</li> <li>Machanical design (including king)</li> </ul> | ment<br>nechanics<br>ent               |                                                  |
|                                                                                                                                                                                                                                                                                      |                                        |                                                  |
| The students understand and are able                                                                                                                                                                                                                                                 | to apply basic concepts of physics and | materials science to:                            |
| <ul> <li>Engineering applications</li> <li>Mechanical testing</li> <li>Instrumentation</li> <li>Mechanical design</li> </ul>                                                                                                                                                         |                                        |                                                  |
| <b>Workload:</b><br>Total: 180 h                                                                                                                                                                                                                                                     |                                        |                                                  |
| Conditions:                                                                                                                                                                                                                                                                          |                                        |                                                  |
| none                                                                                                                                                                                                                                                                                 |                                        |                                                  |
| Frequency: each summer semester                                                                                                                                                                                                                                                      | Recommended Semester:                  | Minimal Duration of the Module:<br>1 semester[s] |
| Contact Hours:                                                                                                                                                                                                                                                                       | Repeat Exams Permitted:                |                                                  |
| 4                                                                                                                                                                                                                                                                                    | according to the examination           |                                                  |
|                                                                                                                                                                                                                                                                                      |                                        | ]                                                |
| Parts of the Module                                                                                                                                                                                                                                                                  |                                        |                                                  |
| Part of the Module: Mechanical Eng                                                                                                                                                                                                                                                   | ineering                               |                                                  |
| Mode of Instruction: lecture                                                                                                                                                                                                                                                         |                                        |                                                  |
| Contact Hours: 3                                                                                                                                                                                                                                                                     |                                        |                                                  |

Part of the Module: Mechanical Engineering (Tutorial)

Mode of Instruction: exercise course Language: English Contact Hours: 1

### Examination

## Introduction to Mechanical Engineering

written exam / length of examination: 90 minutes, graded

## Examination Prerequisites:

Introduction to Mechanical Engineering

| Module MRM-0052: Functional                                                                                                                                                                                                                                                     | Polymers                                                                                                                                                                                                    | 6 ECTS/LP                          |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------|
| Version 1.0.0 (since SoSe15)                                                                                                                                                                                                                                                    |                                                                                                                                                                                                             |                                    |
| Person responsible for module: PD I                                                                                                                                                                                                                                             | Dr. Klaus Ruhland                                                                                                                                                                                           |                                    |
| Contents:                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                             |                                    |
| <ul> <li>Introduction to polymer scienc</li> </ul>                                                                                                                                                                                                                              | e                                                                                                                                                                                                           |                                    |
| <ul> <li>Elastomers and elastoplastic r</li> </ul>                                                                                                                                                                                                                              | naterials                                                                                                                                                                                                   |                                    |
| <ul> <li>Memory-shape polymers</li> </ul>                                                                                                                                                                                                                                       |                                                                                                                                                                                                             |                                    |
| <ul> <li>Piezoelectric polymers</li> </ul>                                                                                                                                                                                                                                      |                                                                                                                                                                                                             |                                    |
| <ul> <li>Electrically conducting polyme</li> </ul>                                                                                                                                                                                                                              | rs                                                                                                                                                                                                          |                                    |
| <ul> <li>Ion-conducting polymers</li> </ul>                                                                                                                                                                                                                                     |                                                                                                                                                                                                             |                                    |
| <ul> <li>Magnetic polymers</li> </ul>                                                                                                                                                                                                                                           |                                                                                                                                                                                                             |                                    |
| <ul> <li>Photoresponsive polymers</li> </ul>                                                                                                                                                                                                                                    |                                                                                                                                                                                                             |                                    |
| <ul> <li>Polymers with second order new</li> </ul>                                                                                                                                                                                                                              | on-linear optical properties                                                                                                                                                                                |                                    |
| <ul> <li>Polymeric catalysts</li> </ul>                                                                                                                                                                                                                                         |                                                                                                                                                                                                             |                                    |
| Self-healing polymers                                                                                                                                                                                                                                                           |                                                                                                                                                                                                             |                                    |
| <ul> <li>Polymers in bio sciences&gt;</li> </ul>                                                                                                                                                                                                                                |                                                                                                                                                                                                             |                                    |
| The students learn how polymeric m<br>mechanical, magnetic, electric, optic<br><b>Workload:</b><br>Total: 180 h<br>20 h studying of course content usin<br>80 h studying of course content thro<br>20 h studying of course content usin<br>60 h lecture and exercise course (at | aterials can be designed and applied to ac<br>cal, thermal or chemical impact.<br>g provided materials (self-study)<br>ugh exercises / case studies (self-study)<br>g literarture (self-study)<br>tendance) | t in a smart manner on an external |
| Conditions:                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                             |                                    |
| Recommended: Attendance to PHM<br>and MRM-0050 (Grundlagen der Po                                                                                                                                                                                                               | -0035 (Chemie I), PHM-0036 (Chemie II)<br>lymerchemie und -physik)                                                                                                                                          |                                    |
| Frequency: irregular will not be                                                                                                                                                                                                                                                | Recommended Semester:                                                                                                                                                                                       | Minimal Duration of the Module:    |
| offered in the next time                                                                                                                                                                                                                                                        | from 2.                                                                                                                                                                                                     | 1 semester[s]                      |
| Contact Hours:                                                                                                                                                                                                                                                                  | Repeat Exams Permitted:                                                                                                                                                                                     |                                    |
| 4                                                                                                                                                                                                                                                                               | according to the examination                                                                                                                                                                                |                                    |
|                                                                                                                                                                                                                                                                                 | regulations of the study program                                                                                                                                                                            |                                    |
|                                                                                                                                                                                                                                                                                 | 1                                                                                                                                                                                                           | J                                  |

### Parts of the Module

### Part of the Module: Functional Polymers

Mode of Instruction: lecture

Language: English Contact Hours: 3

Part of the Module: Functional Polymers (Tutorial)

Mode of Instruction: exercise course

Language: English

Frequency: each summer semester

Contact Hours: 1

## Examination

Functional Polymers

written exam / length of examination: 90 minutes, graded

### **Examination Prerequisites:**

**Functional Polymers** 

| Module PHM-0122: Non-Destruc                                                                                                                                                        | tive Testing                                                                                                       | 6 ECTS/LP                                        |  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------|--------------------------------------------------|--|
| Non-Destructive Testing                                                                                                                                                             |                                                                                                                    |                                                  |  |
| Version 1.0.0 (since WS14/15)                                                                                                                                                       |                                                                                                                    |                                                  |  |
| Person responsible for module: Prof. [                                                                                                                                              | Dr. Markus Sause                                                                                                   |                                                  |  |
| Contents:                                                                                                                                                                           |                                                                                                                    |                                                  |  |
| Introduction to nondestructive te                                                                                                                                                   | sting methods                                                                                                      |                                                  |  |
| <ul> <li>Visual inspection</li> </ul>                                                                                                                                               |                                                                                                                    |                                                  |  |
| <ul> <li>Ultrasonic testing</li> </ul>                                                                                                                                              |                                                                                                                    |                                                  |  |
| <ul> <li>Guided wave testing</li> </ul>                                                                                                                                             | Guided wave testing                                                                                                |                                                  |  |
| <ul> <li>Acoustic emission analysis</li> </ul>                                                                                                                                      |                                                                                                                    |                                                  |  |
| Thermography                                                                                                                                                                        |                                                                                                                    |                                                  |  |
| Radiography                                                                                                                                                                         |                                                                                                                    |                                                  |  |
| <ul> <li>Eddy current testing</li> </ul>                                                                                                                                            |                                                                                                                    |                                                  |  |
| Specialized nondestructive meth                                                                                                                                                     | nods                                                                                                               |                                                  |  |
| Learning Outcomes / Competences                                                                                                                                                     | :                                                                                                                  |                                                  |  |
| The students                                                                                                                                                                        |                                                                                                                    |                                                  |  |
| <ul> <li>acquire knowledge in the field of</li> </ul>                                                                                                                               | i nondestructive evaluation of materials,                                                                          |                                                  |  |
| <ul> <li>are introduced to important cond</li> </ul>                                                                                                                                | epts in nondestructive measurement tec                                                                             | hniaues.                                         |  |
| <ul> <li>are able to independently acquir</li> </ul>                                                                                                                                | e further knowledge of the scientific topic                                                                        | c using various forms of information.            |  |
| <ul> <li>Integrated acquirement of soft sl</li> </ul>                                                                                                                               | kills                                                                                                              |                                                  |  |
| Total: 180 h<br>60 h lecture and exercise course (atter<br>20 h studying of course content using<br>20 h studying of course content using<br>80 h studying of course content throug | ndance)<br>literarture (self-study)<br>provided materials (self-study)<br>gh exercises / case studies (self-study) |                                                  |  |
| Conditions:                                                                                                                                                                         |                                                                                                                    | ]                                                |  |
| Basic knowledge on materials science                                                                                                                                                | , in particular composite materials                                                                                |                                                  |  |
| Frequency: each winter semester                                                                                                                                                     | Recommended Semester:<br>from 1.                                                                                   | Minimal Duration of the Module:<br>1 semester[s] |  |
| Contact Hours:                                                                                                                                                                      | Repeat Exams Permitted:                                                                                            |                                                  |  |
| 4                                                                                                                                                                                   | according to the examination                                                                                       |                                                  |  |
| regulations of the study program                                                                                                                                                    |                                                                                                                    |                                                  |  |
| Parts of the Module                                                                                                                                                                 |                                                                                                                    |                                                  |  |
| Part of the Module: Non-Destructive                                                                                                                                                 | Testing                                                                                                            |                                                  |  |
| Mode of Instruction: lecture                                                                                                                                                        |                                                                                                                    |                                                  |  |
| Language: English                                                                                                                                                                   |                                                                                                                    |                                                  |  |
| Contact Hours: 3                                                                                                                                                                    |                                                                                                                    |                                                  |  |
| Loarning Outcome:                                                                                                                                                                   |                                                                                                                    |                                                  |  |
| see module description                                                                                                                                                              |                                                                                                                    |                                                  |  |

### Contents:

see module description

- Raj: Practical Non-destructive Testing
- Shull: Nondestructive Evaluation Theory and Applications
- Krautkrämer: Ultrasonic testing of materials
- Grosse: Acoustic Emission Testing
- Rose: Ultrasonic waves in solid media
- · Maldague: Nondestructive Evaluation of Materials by Infrared Thermography
- · Herman: Fundamentals of Computerized Tomography

Further literature - actual scientific papers and reviews - will be announced at the beginning of the lecture.

#### Assigned Courses:

Non-Destructive Testing (lecture)

Part of the Module: Non-Destructive Testing (Tutorial)

Mode of Instruction: exercise course

Language: English

Contact Hours: 1

Assigned Courses:

Non-Destructive Testing (Tutorial) (exercise course)

### Examination

#### **Non-Destructive Testing**

written exam / length of examination: 90 minutes, graded

### Examination Prerequisites:

Non-Destructive Testing

| Module PHM-0168: Modern Metal<br>Modern Metallic Materials                                                                                                                                                                                          | lic Materials                                                                                                                        | 6 ECTS/LP                                         |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------|
| Version 1.0.0 (since SoSe15)<br>Person responsible for module: Prof. D                                                                                                                                                                              | r. Ferdinand Haider                                                                                                                  |                                                   |
| Contents:<br>Introduction                                                                                                                                                                                                                           |                                                                                                                                      |                                                   |
| Review of physical metallurgy                                                                                                                                                                                                                       |                                                                                                                                      |                                                   |
| Steels:                                                                                                                                                                                                                                             |                                                                                                                                      |                                                   |
| <ul> <li>principles</li> <li>common alloying elements</li> <li>martensitic transformations</li> <li>dual phase steels</li> <li>TRIP and TWIP steels</li> <li>maraging steel</li> <li>electrical steel</li> <li>production and processing</li> </ul> |                                                                                                                                      |                                                   |
| Aluminium alloys:                                                                                                                                                                                                                                   |                                                                                                                                      |                                                   |
| <ul> <li>2xxx</li> <li>6xxx</li> <li>7xxx</li> <li>Processing – creep forming, hydr</li> </ul>                                                                                                                                                      | oforming, spinforming                                                                                                                |                                                   |
| Titanium alloys                                                                                                                                                                                                                                     |                                                                                                                                      |                                                   |
| Magnesium alloys                                                                                                                                                                                                                                    |                                                                                                                                      |                                                   |
| Superalloys                                                                                                                                                                                                                                         |                                                                                                                                      |                                                   |
| Intermetallics, high entropy alloys                                                                                                                                                                                                                 |                                                                                                                                      |                                                   |
| Learning Outcomes / Competences:<br>Students                                                                                                                                                                                                        |                                                                                                                                      |                                                   |
| <ul> <li>learn about relevant classes of ac</li> <li>aquire the skill to derive alloy pro</li> <li>have the competence to choose a</li> </ul>                                                                                                       | ctual metallic alloys and their properties<br>perties from physical metallurgy principle<br>and to explain appropriate metallic mate | es and concepts<br>rials for special applications |
| Remarks:<br>Scheduled every second summer sems                                                                                                                                                                                                      | ster.                                                                                                                                |                                                   |
| Workload:<br>Total: 180 h<br>60 h lecture and exercise course (atten<br>20 h studying of course content using p<br>20 h studying of course content using li<br>80 h studying of course content through                                              | dance)<br>rovided materials (self-study)<br>terarture (self-study)<br>n exercises / case studies (self-study)                        |                                                   |
| Conditions:<br>Recommended: Knowledge of physical                                                                                                                                                                                                   | metallurgy and physical chemistry                                                                                                    |                                                   |
| Frequency: each summer semester alternating with PHM-0167                                                                                                                                                                                           | Recommended Semester:<br>from 2.                                                                                                     | Minimal Duration of the Module:<br>1 semester[s]  |
| Contact Hours:<br>4                                                                                                                                                                                                                                 | Repeat Exams Permitted:<br>according to the examination<br>regulations of the study program                                          | <u>بــــــــــــــــــــــــــــــــــــ</u>      |

### Parts of the Module

Part of the Module: Modern Metallic Materials

Mode of Instruction: lecture

Language: English

Contact Hours: 4

### Literature:

Cahn-Haasen-Kramer: Materials Science and Technology

Original literature

## Examination

### Modern Metallic Materials

written exam / length of examination: 90 minutes, graded

### Examination Prerequisites:

Modern Metallic Materials

| Module PHM-0184: Sustainable<br>Sustainable Resource Management                                                                                                                                                                                                                                                                                                       | Resource Management                                                                                                                                                                                                                                        | 6 ECTS/LP                                                                                                                                                                                                                                     |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Version 1.0.0 (since SoSe15)<br>Person responsible for module: Prof.                                                                                                                                                                                                                                                                                                  | Dr. Armin Reller                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                               |
| <ul> <li>Learning Outcomes / Competences</li> <li>The students know the basics of<br/>energy sources and metals.</li> <li>Furthermore, the students know<br/>resource price risks. For this pu<br/>protection are being presented,<br/>dealing with resources.</li> <li>Moreover, the students know he<br/>contribute to environmental risk<br/>projects).</li> </ul> | f geographic distribution and the techni<br>risk management methods, which are<br>rpose, resource scarcity indicators, risk<br>which enable the students to make ecc<br>ow resource-based strategies with the h<br>management. All topics are being illust | cal relevancy of different resources like<br>used to identify, measure and manage<br>measures and instruments for risk<br>phomically well-grounded decisions in<br>elp of environmental management<br>rated with examples (from practical     |
| Remarks:<br>Elective Module                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                               |
| Workload:<br>Total: 180 h<br>140 h studying of course content usin<br>40 h seminar (attendance)                                                                                                                                                                                                                                                                       | g provided materials (self-study)                                                                                                                                                                                                                          |                                                                                                                                                                                                                                               |
| Conditions:<br>none                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                            | Credit Requirements:<br>1 written report on selected<br>questions of sustainable resource<br>management (number of pages:<br>approx. 15 - 20; editing time 2 weeks),<br>oral presentation (30 minutes),<br>compulsatory attandance (40 hours) |
| Frequency: irregular (usu. summer semester)                                                                                                                                                                                                                                                                                                                           | Recommended Semester:<br>from 2.                                                                                                                                                                                                                           | Minimal Duration of the Module:<br>1 semester[s]                                                                                                                                                                                              |
| Contact Hours:<br>4                                                                                                                                                                                                                                                                                                                                                   | Repeat Exams Permitted:<br>according to the examination<br>regulations of the study program                                                                                                                                                                |                                                                                                                                                                                                                                               |
| Parts of the Module                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                               |
| Part of the Module: Sustainable Re<br>Mode of Instruction: seminar<br>Lecturers: Prof. Dr. Armin Reller                                                                                                                                                                                                                                                               | source Management                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                               |

Language: English

Frequency: each summer semester

Contact Hours: 2

ECTS Credits: 4.0

#### Contents:

- 1. Introduction (global resource consumption)
- 2. Overview of resource types
- 3. Definition of mineral resources
- 4. Introduction to resource management
- 5. Identification of resource price risks
- 6. Measurement of resource price risks
- 7. Management of resource price risks
- 8. Introduction in basics of environmental management
- 9. Corporate environmental management
- 10. Economical closed-loop systems

#### Lehr-/Lernmethoden:

seminar

media and methods: slides / blackboard with the help of other media

#### Literature:

- Holger Rogall: Nachhaltige Ökonomie, Metropolis, Marburg, 2009.
- Hans-Dieter Haas, Dieter Matthew Schlesinger: Umweltökonomie und Res-sourcenmanagement, Wissenschaftliche Buchgesellschaft, Darmstadt, 2007.
- Colin W. Clark: Mathematical Bioeconomics, Wiley, New York, 1976.
- Werner Gocht: Handbuch der Metallmärkte, 2. Aufl., Springer, New York / Tokyo, 1985.

Part of the Module: Sustainable Resource Management (Tutorial)

Mode of Instruction: exercise course

Lecturers: Prof. Dr. Armin Reller

Language: English

Frequency: each summer semester Contact Hours: 2

ECTS Credits: 2.0

#### Lehr-/Lernmethoden:

tutorial

media and methods: slides / blackboard with the help of other media

#### Examination

#### Sustainable Resource Management

seminar, graded

#### Examination Prerequisites:

Sustainable Resource Management

#### Description:

1 written report (number of pages: approx. 15 - 20; editing time 2 weeks), oral presentation (30 minutes), compulsatory attandance (40 hours)

| Sciences Science S                                                                                                                                                                                | Module PHM-0050: Electronics fo                                         | or Physicists and Materials                        | 6 ECTS/LP                               |  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------|----------------------------------------------------|-----------------------------------------|--|
| Version 1.0.0 (since WS09/10) Person responsible for module: Andreas Hörner Contents:  1. Basics in electronic and electrical engineering 2. Quadrupole theory 3. Analog technique, transistor and opamp circuits 4. Boolean algebra and logic 5. Digital electronics and calculation circuits 6. Microprocessors and Networks 7. Basics in Electronic 8. Implementation of transistors 9. Operational ampilifiers 10. Digital electronics 10. Digital                                                                                                                                                                                | Electronics for Physicists and Materials                                | s Scientists                                       |                                         |  |
| Person responsible for module: Andreas Hörner Contents:  1. Basics in electronic and electrical engineering 2. Quadrupole theory 3. Analog technique, transistor and opamp circuits 4. Boolean algebra and logic 5. Digital electronics and calculation circuits 6. Microprocessors and Networks 7. Basics in Electronic 8. Implementation of transistors 9. Operational amplifiers 10. Digital electronics 11. Easics in Electronic 12. Eventing Outcomes / Competences: The students: 13. Now the basic terms, concepts and phenomena of electronic and electrical engineering for the use in the Lab, 14. have skills in easy circuit design, measuring and control technology, analog and digital electronics, 15. have expertise in independent working on circuit problems. They can calculate and develop easy circuits. 16. Integrated acquirement of soft skills: autoomous working with specialis! Illerature in English, acquisition of presentation techniques, capacity for teamwork, ability to document experimental results, and interdisciplinary thinking and working. 20. have excites course (attendance) 20. have gover content using literature (self-study) 20. h studying of course content using literature (self-study) 20. h studying of course content using literature (self-study) 20. h studying of course content using literature (self-study) 20. h studying of course content using literature (self-study) 20. h studying of course content using literature (self-study) 20. h studying of course content using literature (self-study) 20. h studying of course content using literature (self-study) 20. h studying of course content using literature (self-study) 20. h studying of course content using literature (self-study) 20. h studying of course content using literature (self-study) 20. h studying of course content using literature (self-study) 20. h studying of course content using literature (self-study) 20. h s                                                                                                                                                                                | Version 1.0.0 (since WS09/10)                                           |                                                    |                                         |  |
| Contents:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Person responsible for module: Andreas Hörner                           |                                                    |                                         |  |
| <ol> <li>Basics in electronic and electrical engineering         <ul> <li>Quadrupole theory</li> <li>Analog technique, transistor and opamp circuits</li> <li>Boolean algebra and logic</li> <li>Digital electronics and calculation circuits</li> <li>Microprocessors and Networks</li> <li>Basics in Electronic</li> <li>Implementation of transistors</li> <li>Operational amplifiers</li> <li>Digital electronics</li> </ul> </li> <li>Learning Outcomes / Competences: The students:         <ul> <li>know the basic terms, concepts and phenomena of electronic and electrical engineering for the use in the Lab,</li> <li>have expertise in independent working on circuit problems. They can calculate and develop easy circuits.</li> <li>Integrated acquirement of soft skills: autonomous working with specialit literature in English, acquisition of presentation techniques, capacity for teamwork, ability to document experimental results, and interdisciplinary thinking and working.</li> <li>Workload: Totai: 180 h</li> <li>Bot studying of course content using provided materials (self-study)</li> <li>Bot studying of course content using iteratrue (self-study)</li> <li>Bot studying of course content using literature (self-study)</li> <li>Bot studying of course content using literature (self-study)</li> <li>Bot studying of course content using literature (self-study)</li> <li>Bot studying of the Module:</li> <li>regulations of the study program</li> </ul> </li> <li>Parts of the Module: Electronics for Physicists and Materials Scientists</li> <li>Mode of Instruction: lecture</li> <li>Laguage: English</li> <li>Contact Hours: 4</li> <li>Learning Outcome: see module description</li> </ol>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Contents:                                                               |                                                    |                                         |  |
| 2. Quadrupole theory 3. Analog technique, transistor and opamp circuits 4. Boolean algebra and logic 5. Digital electronics and calculation circuits 6. Microprocessors and Networks 7. Basics in Electronic 8. Implementation of transistors 9. Operational amplifiers 10. Digital electronics 10. D                                                                                                                                                                                 | 1. Basics in electronic and electrica                                   | 1. Basics in electronic and electrical engineering |                                         |  |
| a. Analog technique, transistor and opamp circuits b. Bodean algebra and logic b. Digital electronics and calculation circuits b. Microprocessors and Networks 7. Basics in Electronic b. Implementation of transistors 9. Operational amplifiers 10. Digital electronics Learning Outcomes / Competences: The students: b. know the basic terms, concepts and phenomena of electronic and electrical engineering for the use in the Lab, b. have skills in easy circuit design, measuring and control technology, analog and digital electronics, b. have skills in easy circuit design, measuring and control technology, analog and digital electronics, b. have skills in easy circuit design, measuring and control technology, analog and digital electronics, b. have skills in easy circuit design, measuring and control technology, analog and digital electronics, b. have skills in easy circuit design, measuring and control technology, analog and digital electronics, b. have skills in easy circuit design, measuring and control technology, analog and digital electronics, b. have skills in easy circuit design, measuring and control technology, analog and digital electronics, b. have skills in easy circuit design, measuring and control technology, analog and digital electronics, b. have skills in easy circuit design, measuring and control technology, analog and digital electronics, b. have skills in easy circuit design, measuring and control technology, analog and digital electronics, b. have skills in easy circuit design, measuring and control technology, analog and digital electronics, b. have skills in easy circuit design, measuring and control technology, analog and digital electronics, b. have skills in easy circuit design, measuring and control technology, analog and digital electronics, b. have skills description of soft skills: autooncous working, with specialit literature terms elegish, c. Contact Hours: A Learning Outcome: see module description Contents: see module description Contents:                                                                                                                                                                                                                                | 2. Quadrupole theory                                                    |                                                    |                                         |  |
| Electronics and legic     Subject electronic and calculation circuits.     Subject electronic and calculation circuits.     Subject electronic and pleffers     Subject electronic and pleffers     Subject electronics     Implementation of transistors     Subject electronics     Subject     Subject     Subject electronics     Subject ele                                                                                                                                                                                     | 3. Analog technique, transistor and opamp circuits                      |                                                    |                                         |  |
| b. Ucipital electronics and calculation circuits b. Microprocessors and Networks 7. Basics in Electronic 8. Implementation of transistors 9. Operational amplifiers 10. Digital electronics 10. Digital electronics 11. Digital electronics 12. Earning Outcomes / Competences: 13. The students: 14. Know the basic terms, concepts and phenomena of electronic and electrical engineering for the use in the Lab, 15. have skills in easy circuit design, measuring and control technology, analog and digital electronics, 15. have expertise in independent working on circuit problems. They can calculate and develop easy circuits. 15. Integrated acquirement of soft skills: autonomous working with specialist literature in English, acquisition of 15. presentation techniques, capacity for teamwork, ability to document experimental results, and interdisciplinary 15. thinking and working.  15. Using of course content using provided materials (self-study) 26. hstudying of course content using provided materials (self-study) 26. hstudying of course content using provided materials (self-study) 26. hstudying of course content using provided materials (self-study) 26. hstudying of course content using provided materials (self-study) 26. hstudying of course content using provided materials (self-study) 26. hstudying of course content through exercises / case studies (self-study) 26. hstudying of course content through exercises / case studies (self-study) 27. Conditions: 28. Integrate Hours: 29. Repeat Exams Permitted: 29. according to the examination 29. regulations of the study program  29. Parts of the Module 20. Part of the Module: Electronics for Physicists and Materials Scientists 29. Mode of Instruction: lecture 29. English 20. Contact Hours: 4 20. Learning Outcome: 29. see module description 20. See module description 2                                                                                                                                                                                 | 4. Boolean algebra and logic                                            |                                                    |                                         |  |
| b. Implementation of transistors b. Operational amplifiers b. Deparational amplifiers b. Digital electronics b. Implementation of transistors b. Operational amplifiers b. Digital electronics b. Earning Outcomes / Competences: The students:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 5. Digital electronics and calculation                                  | 1 CIRCUITS                                         |                                         |  |
| Subconnectation of transistors     Operational amplifiers     Cligital electronics  Learning Outcomes / Competences: The students:     Know the basic terms, concepts and phenomena of electronic and electrical engineering for the use in the Lab,     have skills in easy circuit design, measuring and control technology, analog and digital electronics,     have expertise in independent working on circuit problems. They can calculate and develop easy circuits.     Integrated acquirement of soft skills: autonomous working with specialist literature in English, acquisition of     presentation techniques, capacity for teamwork, ability to document experimental results, and interdisciplinary     thinking and working.  Workload: Total: 180 h B00 h lecture and exercise course (attendance) 20 h studying of course content using provided materials (self-study) 20 h studying of course content using literarture (self-study) 20 h studying of course content through exercises / case studies (self-study) 20 h studying of course content through exercises / case studies (self-study) 20 h studying of course content through exercises / case studies (self-study) 20 h studying of course content through exercises / case studies (self-study) 20 h studying of course content using provided materials (self-study) 20 h studying of course content using trons interative (self-study) 20 h studying of course content using trons interative (self-study) 20 h studying of course content using trons interative (self-study) 20 h studying of course content using trons interative (self-study) 20 h studying of course content using trons interative (self-study) 20 h studying of course content using trons interative (self-study) 20 h studying of course content using trons interative (se                                                                                                                                                                                      | 7 Basics in Electronic                                                  |                                                    |                                         |  |
| <ul> <li>9. Operational amplifiers <ul> <li>10. Digital electronics</li> </ul> </li> <li>Learning Outcomes / Competences: <ul> <li>The students:</li> <li>know the basic terms, concepts and phenomena of electronic and electrical engineering for the use in the Lab,</li> <li>have skills in easy circuit design, measuring and control technology, analog and digital electronics.</li> <li>have expertise in independent working on circuit problems. They can calculate and develop easy circuits.</li> <li>Integrated acquirement of soft skills: autonomous working with specialist literature in English, acquisition of presentation techniques, capacity for teamwork, ability to document experimental results, and interdisciplinary thinking and working.</li> </ul> Workload: Total: 180 h 80 h lecture and exercise course (attendance) 20 h studying of course content using provided materials (self-study) 20 h studying of course content through exercises / case studies (self-study) 80 h studying of course content through exercises / case studies (self-study) 80 h studying of course content through exercises / case studies (self-study) 80 h studying of course content through exercises / case studies (self-study) 80 h studying of course content through exercises / case studies (self-study) 80 h studying of course content through exercises / case studies (self-study) 80 h studying of course content through exercises / case studies (self-study) 80 h studying of course content through exercises / case studies (self-study) 80 h studying of course content using provided materials (self-study) 80 h studying of course content through exercises / case studies (self-study) 80 h studying of course content through exercises / case studies (self-study) 80 h studying of course content through exercises / case studies (self-study) 80 h studying of course content through exercises / case studies (self-study) 80 h studying of course</li></ul>                                                                                                                                                                                                                                                                                                 | 8. Implementation of transistors                                        |                                                    |                                         |  |
| 10. Digital electronics         Learning Outcomes / Competences:         The students:         • know the basic terms, concepts and phenomena of electronic and electrical engineering for the use in the Lab,         • have skills in easy circuit design, measuring and control technology, analog and digital electronics,         • have sexpertise in independent working on circuit problems. They can calculate and develop easy circuits.         • Integrated acquirement of soft skills: autonomous working with specialist literature in English, acquisition of presentation techniques, capacity for teamwork, ability to document experimental results, and interdisciplinary thinking and working.         Workload:         Total: 180 h         50 h lecture and exercise course (attendance)         20 h studying of course content using provided materials (self-study)         20 h studying of course content through exercises / case studies (self-study)         20 h studying of course content through exercises / case studies (self-study)         20 h studying of course content through exercises / case studies (self-study)         20 h studying of course content through exercises / case studies (self-study)         20 h studying of course content through exercises / case studies (self-study)         20 h studying of course content through exercises / case studies (self-study)         20 h studying of course content through exercises / case studies (self-study)         20 h studying of course content through exercises / case studies (self-stud                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 9. Operational amplifiers                                               |                                                    |                                         |  |
| Learning Outcomes / Competences:         The students:         • know the basic terms, concepts and phenomena of electronic and electrical engineering for the use in the Lab,         • have skills in easy circuit design, measuring and control technology, analog and digital electronics,         • have expertise in independent working on circuit problems. They can calculate and develop easy circuits.         • Integrated acquirement of soft skills: autonomous working with specialist literature in English, acquisition of presentation techniques, capacity for teamwork, ability to document experimental results, and interdisciplinary thinking and working.         Workload:         Total: 180 h         60 h lecture and exercise course (attendance)         20 h studying of course content using provided materials (self-study)         20 h studying of course content through exercises / case studies (self-study)         20 h studying of course content through exercises / case studies (self-study)         20 h studying of course content through exercises / case studies (self-study)         Conditions:         none         Frequency: each semester       Recommended Semester:         from 3.       Repeat Exams Permitted:         according to the examination       regulations of the study program         Parts of the Module       Pertor the study program         Part of the Module: Electronics for Physicists and Materials Scientists         Mode of I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 10. Digital electronics                                                 |                                                    |                                         |  |
| The students:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Learning Outcomes / Competences:                                        |                                                    |                                         |  |
| <ul> <li>know the basic terms, concepts and phenomena of electronic and electrical engineering for the use in the Lab,</li> <li>have skills in easy circuit design, measuring and control technology, analog and digital electronics,</li> <li>have expertise in independent working on circuit problems. They can calculate and develop easy circuits.</li> <li>Integrated acquirement of soft skills: autonomous working with specialist literature in English, acquisition of presentation techniques, capacity for teamwork, ability to document experimental results, and interdisciplinary thinking and working.</li> </ul> Workload: Total: 180 h 800 h lecture and exercise course (attendance) 20 h studying of course content using provided materials (self-study) 20 h studying of course content through exercises / case studies (self-study) 80 h studying of course content through exercises / case studies (self-study) 80 h studying of course content through exercises / case studies (self-study) 80 h studying of course content through exercises / case studies (self-study) 80 h studying of course content through exercises / case studies (self-study) 80 conditions: 80 none 87 of the Module 88 conditions: 80 contact Hours: 4 80 contact Hours: 50 content Horous for Physicists and Materials Scientists 80 contact Hours: 4 80 contact Hours: 50 content Horous                                                                                                                                                                                                                                                                                                                                                                                  | The students:                                                           |                                                    |                                         |  |
| <ul> <li>have skills in easy circuit design, measuring and control technology, analog and digital electronics.</li> <li>have expertise in independent working on circuit problems. They can calculate and develop easy circuits.</li> <li>Integrated acquirement of soft skills: autonomous working with specialist literature in English, acquisition of presentation techniques, capacity for teamwork, ability to document experimental results, and interdisciplinary thinking and working.</li> <li>Workload: Total: 180 h</li> <li>80 h lecture and exercise course (attendance)</li> <li>20 h studying of course content using provided materials (self-study)</li> <li>80 h studying of course content through exercises / case studies (self-study)</li> <li>80 h studying of course content through exercises / case studies (self-study)</li> <li>80 h studying of course content through exercises / case studies (self-study)</li> <li>80 h studying of course content through exercises / case studies (self-study)</li> <li>80 h studying of course content through exercises / case studies (self-study)</li> <li>80 h studying of course content through exercises / case studies (self-study)</li> <li>80 h studying of course content through exercises / case studies (self-study)</li> <li>80 h studying of course content through exercises / case studies (self-study)</li> <li>80 h studying of course content through exercises / case studies (self-study)</li> <li>80 h studying of course content through exercises / case studies (self-study)</li> <li>80 h studying of course content through exercises / case studies (self-study)</li> <li>80 h studying of course content through exercises / case studies (self-study)</li> <li>80 h studying of course content through exercises / case studies (self-study)</li> <li>80 h studying of course content through exercises / case studies (self-study)</li> <li>80 h studying of course content through exercises / case studies (self-study)</li> <li>80 h studying of course content through exercises / case studies (self-study)</li> <l< td=""><td><ul> <li>know the basic terms, concepts a</li> </ul></td><th>and phenomena of electronic and electric</th><td>cal engineering for the use in the Lab.</td></l<></ul> | <ul> <li>know the basic terms, concepts a</li> </ul>                    | and phenomena of electronic and electric           | cal engineering for the use in the Lab. |  |
| have expertise in independent working on circuit problems. They can calculate and develop easy circuits.     Integrated acquirement of soft skills: autonomous working with specialist literature in English, acquisition of presentation techniques, capacity for teamwork, ability to document experimental results, and interdisciplinary thinking and working.  Workload: Total: 180 h 60 h lecture and exercise course (attendance) 20 h studying of course content using provided materials (self-study) 20 h studying of course content using literarture (self-study) 80 h studying of course content through exercises / case studies (self-study) 80 h studying of course content through exercises / case studies (self-study) 80 h studying of course content through exercises / case studies (self-study) 80 h studying of course content through exercises / case studies (self-study) 80 h studying of course content through exercises / case studies (self-study) 80 h studying of course content through exercises / case studies (self-study) 80 h studying of course content through exercises / case studies (self-study) 80 h studying of course content using literarture (self-study) 80 h studying of course content through exercises / case studies (self-study) 80 conditions: 80 none  Frequency: each semester   Recommended Semester:  from 3.  Repeat Exams Permitted: according to the examination regulations of the study program  Parts of the Module  Part of the Module  Part of the Module: Electronics for Physicists and Materials Scientists Mode of Instruction: lecture Language: English Contact Hours: 4  Learning Outcome: see module description  Contents: see module description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | <ul> <li>have skills in easy circuit design,</li> </ul>                 | measuring and control technology, analy            | og and digital electronics,             |  |
| <ul> <li>Integrated acquirement of soft skills: autonomous working with specialist literature in English, acquisition of presentation techniques, capacity for teamwork, ability to document experimental results, and interdisciplinary thinking and working.</li> <li>Workload: Total: 180 h <ul> <li>B0 h lecture and exercise course (attendance)</li> <li>20 h studying of course content using provided materials (self-study)</li> <li>20 h studying of course content through exercises / case studies (self-study)</li> <li>20 h studying of course content through exercises / case studies (self-study)</li> <li>20 h studying of course content through exercises / case studies (self-study)</li> <li>20 h studying of course content through exercises / case studies (self-study)</li> <li>20 none</li> <li>Frequency: each semester</li> <li>Repeat Exams Permitted:         according to the examination         regulations of the study program</li> </ul> </li> <li>Parts of the Module: Electronics for Physicists and Materials Scientists Mode of Instruction: lecture Language: English Contact Hours: 4 Learning Outcome: see module description Contents: See module description</li></ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | <ul> <li>have expertise in independent w</li> </ul>                     | orking on circuit problems. They can calc          | culate and develop easy circuits.       |  |
| presentation techniques, capacity for teamwork, ability to document experimental results, and interdisciplinary thinking and working. Workload: Total: 180 h S0 h lecture and exercise course (attendance) 20 h studying of course content using provided materials (self-study) 20 h studying of course content using literarture (self-study) 80 h studying of course content through exercises / case studies (self-study) 80 h studying of course content through exercises / case studies (self-study) Conditions: none Frequency: each semester Recommended Semester: from 3. Contact Hours: 4 Repeat Exams Permitted: according to the examination regulations of the study program Parts of the Module Part of the Module: Electronics for Physicists and Materials Scientists Mode of Instruction: lecture Language: English Contact Hours: 4 Learning Outcome: see module description Contents: see module description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | <ul> <li>Integrated acquirement of soft sk</li> </ul>                   | ills: autonomous working with specialist           | literature in English, acquisition of   |  |
| thinking and working. Workload: Total: 180 h 60 h lecture and exercise course (attendance) 20 h studying of course content using provided materials (self-study) 20 h studying of course content using literarture (self-study) 80 h studying of course content through exercises / case studies (self-study) 80 h studying of course content through exercises / case studies (self-study) Conditions: none Frequency: each semester Recommended Semester: from 3. Contact Hours: 4 Repeat Exams Permitted: according to the examination regulations of the study program Parts of the Module Part of the Module: Electronics for Physicists and Materials Scientists Mode of Instruction: lecture Language: English Contact Hours: 4 Learning Outcome: see module description Contents: see module description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | presentation techniques, capacit                                        | y for teamwork, ability to document expe           | rimental results, and interdisciplinary |  |
| Workload:       Total: 180 h         Total: 180 h       60 h lecture and exercise course (attendance)         20 h studying of course content using provided materials (self-study)       20 h studying of course content using literarture (self-study)         80 h studying of course content using literarture (self-study)       80 h studying of course content through exercises / case studies (self-study)         80 h studying of course content through exercises / case studies (self-study)       80 h studying of course content through exercises / case studies (self-study)         Conditions:       none         Frequency: each semester       Recommended Semester:         from 3.       1 semester[s]         Contact Hours:       Repeat Exams Permitted:         according to the examination       regulations of the study program         Parts of the Module       Electronics for Physicists and Materials Scientists         Mode of Instruction: lecture       Language: English         Contact Hours: 4       Learning Outcome:         see module description       see module description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | thinking and working.                                                   | _                                                  |                                         |  |
| Total: 180 h 60 h lecture and exercise course (attendance) 20 h studying of course content using provided materials (self-study) 20 h studying of course content using literarture (self-study) 80 h studying of course content through exercises / case studies (self-study) 80 h studying of course content through exercises / case studies (self-study) Conditions: none Frequency: each semester Recommended Semester: from 3. Contact Hours: A Repeat Exams Permitted: according to the examination regulations of the study program Parts of the Module Part of the Module: Electronics for Physicists and Materials Scientists Mode of Instruction: lecture Language: English Contact Hours: 4 Learning Outcome: see module description Contents:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Workload:                                                               |                                                    |                                         |  |
| 60 h lecture and exercise course (attendance)   20 h studying of course content using provided materials (self-study)   20 h studying of course content using literatrure (self-study)   80 h studying of course content through exercises / case studies (self-study)   80 h studying of course content through exercises / case studies (self-study)   80 h studying of course content through exercises / case studies (self-study)   80 h studying of course content through exercises / case studies (self-study)   80 h studying of course content through exercises / case studies (self-study)   80 h studying of course content through exercises / case studies (self-study)   80 h studying of course content through exercises / case studies (self-study)   80 h studying of course content through exercises / case studies (self-study)   80 h studying of course content through exercises / case studies (self-study)   80 h studying of course content through exercises / case studies (self-study)   80 h studying of course content through exercises / case studies (self-study)   80 h studying of course content through exercises / case studies (self-study)   80 h studying of course content through exercises / case studies (self-study)   80 h studying of course content through exercises / case studies (self-study)   80 h studying of course content through exercises / case studies (self-study)   80 h studying of course content through exercises / case studies (self-study)   9 attract thours:   9 attract of the Module:   9 attract                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Total: 180 h                                                            |                                                    |                                         |  |
| 20 h studying of course content using provided materials (self-study)         20 h studying of course content using literarture (self-study)         80 h studying of course content through exercises / case studies (self-study)         80 h studying of course content through exercises / case studies (self-study)         80 h studying of course content through exercises / case studies (self-study)         80 h studying of course content through exercises / case studies (self-study)         80 h studying of course content through exercises / case studies (self-study)         80 h studying of course content through exercises / case studies (self-study)         80 h studying of course content through exercises / case studies (self-study)         80 h studying of course content through exercises / case studies (self-study)         80 h studying of course content through exercises / case studies (self-study)         80 h studying of course content through exercises / case studies (self-study)         80 h studying of course content through exercises / case studies (self-study)         80 h studying of course content through exercises for the study program         Part of the Module: Electronics for Physicists and Materials Scientists         Mode of Instruction: lecture         Language: English         Contact Hours: 4         Learning Outcome:         see module description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 60 h lecture and exercise course (attendance)                           |                                                    |                                         |  |
| 20 In studying of course content using interarture (self-study)         80 h studying of course content through exercises / case studies (self-study)         Conditions:<br>none         Frequency: each semester       Recommended Semester:<br>from 3.         Contact Hours:<br>4       Repeat Exams Permitted:<br>according to the examination<br>regulations of the study program         Parts of the Module       Part of the Module: Electronics for Physicists and Materials Scientists         Mode of Instruction: lecture<br>Language: English       Contact Hours: 4         Learning Outcome:<br>see module description       See module description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 20 h studying of course content using p                                 | brovided materials (self-study)                    |                                         |  |
| Conditions:       Image: Exercises / case studies (sen-study)         Frequency: each semester       Recommended Semester:         from 3.       1 semester[s]         Contact Hours:       Repeat Exams Permitted:         4       according to the examination         regulations of the study program       regulations of the study program         Parts of the Module       Flectronics for Physicists and Materials Scientists         Mode of Instruction: lecture       Language: English         Contact Hours: 4       Learning Outcome:         see module description       see module description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 20 h studying of course content using I                                 | hevercises / case studies (self-study)             |                                         |  |
| Conductions:<br>none       Minimal Duration of the Module:<br>1 semester[s]         Frequency: each semester       Recommended Semester:<br>from 3.       Minimal Duration of the Module:<br>1 semester[s]         Contact Hours:       Repeat Exams Permitted:<br>according to the examination<br>regulations of the study program       1 semester[s]         Parts of the Module       Electronics for Physicists and Materials Scientists       Mode of Instruction: lecture         Language: English<br>Contact Hours: 4       Electronics for Physicists and Materials Scientists       Electronics for Physicists and Materials Scientists         Contact Hours: 4       Electronics for Physicists and Materials Scientists       Electronics for Physicists and Materials Scientists         Contact Hours: 4       Electronics for Physicists and Materials Scientists       Electronics for Physicists         Learning Outcome:<br>see module description       Scientists       Scientists                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                         |                                                    |                                         |  |
| Recommended Semester:       Minimal Duration of the Module:         from 3.       1 semester[s]         Contact Hours:       Repeat Exams Permitted:         according to the examination       regulations of the study program         Parts of the Module:       Electronics for Physicists and Materials Scientists         Mode of Instruction:       lecture         Language:       English         Contact Hours: 4       Learning Outcome:         see module description       see module description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                         |                                                    |                                         |  |
| Frequency: each semester       Recommended Semester:<br>from 3.       Minimal Duration of the Module:<br>1 semester[s]         Contact Hours:<br>4       Repeat Exams Permitted:<br>according to the examination<br>regulations of the study program       1         Parts of the Module       Repeat Exams Permitted:<br>according to the examination<br>regulations of the study program       1         Parts of the Module:       Electronics for Physicists and Materials Scientists       1         Mode of Instruction:       Instruction:       Instruction:         Language:       English       1         Contact Hours:       4       1         Learning Outcome:<br>see module description       See module description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                         | 1                                                  |                                         |  |
| Inom 3.       Insertester[s]         Contact Hours:       Repeat Exams Permitted:         according to the examination       regulations of the study program         Parts of the Module       Parts of the Module: Electronics for Physicists and Materials Scientists         Mode of Instruction: lecture       Language: English         Contact Hours: 4       Learning Outcome:         see module description       see module description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Frequency: each semester                                                | Recommended Semester:                              | Minimal Duration of the Module:         |  |
| Contact Hours:       Repeat Exams Permitted:         4       according to the examination         regulations of the study program         Parts of the Module         Part of the Module:         Part of the Module:         Electronics for Physicists and Materials Scientists         Mode of Instruction:         Isolary:         Contact Hours:         see module description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                         | from 3.                                            | 1 semester[s]                           |  |
| 4       according to the examination regulations of the study program         Parts of the Module       Parts of the Module: Electronics for Physicists and Materials Scientists         Mode of Instruction: lecture       Language: English         Contact Hours: 4       Learning Outcome: see module description         Contents:       see module description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Contact Hours:                                                          | Repeat Exams Permitted:                            |                                         |  |
| Parts of the Module Part of the Module: Electronics for Physicists and Materials Scientists Mode of Instruction: lecture Language: English Contact Hours: 4 Learning Outcome: see module description Contents: see module description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 4                                                                       | according to the examination                       |                                         |  |
| Parts of the Module Part of the Module: Electronics for Physicists and Materials Scientists Mode of Instruction: lecture Language: English Contact Hours: 4 Learning Outcome: see module description Contents: see module description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | regulations of the study program                                        |                                                    |                                         |  |
| Part of the Module: Electronics for Physicists and Materials Scientists Mode of Instruction: lecture Language: English Contact Hours: 4 Learning Outcome: see module description Contents: see module description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Parts of the Module                                                     |                                                    |                                         |  |
| Mode of Instruction: lecture Language: English Contact Hours: 4 Learning Outcome: see module description Contents: see module description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Part of the Module: Electronics for Physicists and Materials Scientists |                                                    |                                         |  |
| Language: English Contact Hours: 4 Learning Outcome: see module description Contents: see module description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Mode of Instruction: lecture                                            |                                                    |                                         |  |
| Contact Hours: 4 Learning Outcome: see module description Contents: see module description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Language: English                                                       |                                                    |                                         |  |
| Learning Outcome:<br>see module description<br>Contents:<br>see module description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                         |                                                    |                                         |  |
| see module description Contents: see module description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Learning Outcome:                                                       |                                                    |                                         |  |
| See module description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | see module description                                                  |                                                    |                                         |  |
| see module description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Contents:                                                               |                                                    |                                         |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | see module description                                                  |                                                    |                                         |  |

- Paul Horowitz: The Art of Electronics (Cambridge University Press)
- National Instruments: MultiSim software package (available in the lecture)

### Examination

### **Electronics for Physicists and Materials Scientists**

oral exam / length of examination: 30 minutes, graded

## Examination Prerequisites:

Electronics for Physicists and Materials Scientists

| Module PHM-0166: Carbon-base                                                                              | d functional Materials                  | 6 ECTS/LP                                        |
|-----------------------------------------------------------------------------------------------------------|-----------------------------------------|--------------------------------------------------|
| (Carboterials)                                                                                            | rhoterials)                             |                                                  |
| Version 1.0.0 (since SoSe15)                                                                              |                                         |                                                  |
| Person responsible for module: Prof. D                                                                    | er. Dirk Volkmer                        |                                                  |
| Contents:                                                                                                 |                                         |                                                  |
| 1. Introduction to carbon allotropes and                                                                  | d porous carbon materials [4]           |                                                  |
| 2. Physical properties of fullerenes, cal                                                                 | bon nanotubes and graphene [4]          |                                                  |
| 3. Solid state NMR spectroscopy of ca                                                                     | rbon materials [4]                      |                                                  |
| 4. Metal carbides [4]                                                                                     |                                         |                                                  |
| 5. Carbon thin films and coatings [4]                                                                     |                                         |                                                  |
| 6. Manufacturing and processing techr                                                                     | ology of carbon fibres [4]              |                                                  |
| 7. Carbon-fibre reinforced polymer con                                                                    | nposites [4]                            |                                                  |
| 8. Carbon-fibre reinforced aluminium (I                                                                   | Metal Matrix Composites, MMC) [4]       |                                                  |
| 9. Energy storage in carbon materials                                                                     | [4]                                     |                                                  |
| 10. Carbon-based materials for opto-el                                                                    | ectronics [4]                           |                                                  |
| 11. Quantum transport phenomena rela                                                                      | ating to carbon materials [4]           |                                                  |
| 12. a) Manipulating heat flow with carbon-based electronic analogs: phononics in place of electronics [2] |                                         |                                                  |
| 12. b) Carbon-based spintronics [2]                                                                       |                                         |                                                  |
| 13. Fabrication and processing of carbon-based nanostructures [4]                                         |                                         |                                                  |
| Learning Outcomes / Competences:                                                                          |                                         |                                                  |
| The students:                                                                                             |                                         |                                                  |
| <ul> <li>know the basics of the chemistry</li> <li>acquire knowledge about the stru</li> </ul>            | and physics of carbon materials and the | eir applications,                                |
| materials and carbon based devi                                                                           | ces,                                    |                                                  |
| learn to work with specialist literature in english.                                                      |                                         |                                                  |
|                                                                                                           |                                         |                                                  |
| Workload:                                                                                                 |                                         |                                                  |
| Total: 180 h                                                                                              |                                         |                                                  |
| 20 h studying of course content using p                                                                   | provided materials (self-study)         |                                                  |
| 20 h studying of course content throug                                                                    | h exercises / case studies (self-study) |                                                  |
| 60 h lecture and exercise course (atter                                                                   | ndance)                                 |                                                  |
| Conditions:                                                                                               |                                         |                                                  |
| none                                                                                                      |                                         |                                                  |
| Frequency: each summer semester                                                                           | Recommended Semester:<br>from 2.        | Minimal Duration of the Module:<br>1 semester[s] |
| Contact Hours:                                                                                            | Repeat Exams Permitted:                 |                                                  |
| 4                                                                                                         | according to the examination            |                                                  |
|                                                                                                           | regulations of the study program        |                                                  |

### Parts of the Module

Part of the Module: Carbon-based functional Materials (Carboterials)

Mode of Instruction: lecture

Language: English

Contact Hours: 4

## Literature:

will be announced by the lecturers

### Examination

#### **Carbon-based functional Materials (Carboterials)**

written exam / length of examination: 120 minutes, graded

## Examination Prerequisites:

Carbon-based functional Materials (Carboterials)

| Module PHM-0198: Special Topics in Materials Science (Foreign<br>Institution)<br>Special Topics in Materials Science (Foreign Institution) |                                                                                             | 20 ECTS/LP                                                    |
|--------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|---------------------------------------------------------------|
| Version 1.0.0 (since WS15/16)<br>Person responsible for module: Prof. D                                                                    | r. Ferdinand Haider                                                                         |                                                               |
| Conditions:<br>studies at an international partner institution                                                                             |                                                                                             | Credit Requirements:<br>written exam, oral exam, report, etc. |
| Frequency: each semester                                                                                                                   | Recommended Semester:                                                                       | Minimal Duration of the Module:<br>semester[s]                |
|                                                                                                                                            | Repeat Exams Permitted:<br>according to the examination<br>regulations of the study program |                                                               |

# Parts of the Module Part of the Module: Special Topics in Materials Science (Foreign Institution) Language: English

### Examination

### Special Topics in Materials Science (Foreign Institution)

module exam, written exam, oral exam, report, etc., graded

## Examination Prerequisites:

Special Topics in Materials Science (Foreign Institution)
| Module PHM-0196: Surfaces and Interfaces II: Joining processes<br>Surfaces and Interfaces II: Joining processes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                  | 6 ECTS/LP                                                             |  |  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------|--|--|
| Version 1.1.0 (since WS15/16)<br>Person responsible for module: Dr. Juc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | lith Moosburger-Will                                                                                             |                                                                       |  |  |
| Learning Outcomes / Competences:<br>The students                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                  |                                                                       |  |  |
| <ul> <li>know the application areas of compose</li> <li>know the basics of cohesion and adhed the two the basics of joining techniques</li> <li>are introduced to physical and chemice</li> <li>Are able to independently acquire further the two the</li></ul> | ite materials<br>esion<br>cal properties metal-metal, metal-polyme<br>her knowledge of the scientific topic usir | er and polymer-polymer interfaces<br>ng various forms of information. |  |  |
| <b>Workload:</b><br>Total: 180 h                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                  |                                                                       |  |  |
| Conditions:<br>Basic knowledge on materials science, lecture "Surfaces and Interfaces I"<br>Module Surfaces and Interfaces (PHM-0117) - recommended                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                  | Credit Requirements:<br>Bestehen der Modulprüfung                     |  |  |
| Frequency: each summer semester                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Recommended Semester:<br>from 2.                                                                                 | Minimal Duration of the Module:<br>1 semester[s]                      |  |  |
| Contact Hours:<br>4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Repeat Exams Permitted:<br>any                                                                                   |                                                                       |  |  |
| Parts of the Module                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                  |                                                                       |  |  |
| Part of the Module: Surfaces and Int<br>Mode of Instruction: lecture<br>Lecturers: Prof. Dr. Siegfried Horn<br>Language: German<br>Contact Hours: 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | erfaces II: Joining processes                                                                                    |                                                                       |  |  |
| Contents:<br>The following topics are treated:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                  |                                                                       |  |  |
| <ul> <li>Introduction to adhesion</li> <li>Role of surface and interface properties</li> <li>Introduction to interactions at surfaces and interfaces</li> <li>Adhesion theories</li> <li>Surface and interface energy</li> <li>Surface treatment techniques</li> <li>Joining techniques</li> <li>Physical and chemical properties of joints</li> <li>Applications</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                  |                                                                       |  |  |
| Lehr-/Lernmethoden:<br>Lecture: Beamer presentation and I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Blackboard                                                                                                       |                                                                       |  |  |
| Exercise: Exercises on recent topics, specialization of lecture contents                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                  |                                                                       |  |  |
| Literature:<br>Literature, including actual scientific papers and reviews, will be announced at the beginning of the lecture.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                  |                                                                       |  |  |

## Examination

## Surfaces and Interfaces II: Joining processes

written exam / length of examination: 90 minutes, graded

## **Examination Prerequisites:**

Surfaces and Interfaces II: Joining processes

## Parts of the Module

Part of the Module: Übung zu Surfaces and Interfaces II: Joining processes

Mode of Instruction: exercise course Language: German Contact Hours: 1

| Module PHM-0169: Masterthesis                                                                                                                         | 5                                                                                           | 26 ECTS/LP                                       |  |  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|--------------------------------------------------|--|--|
| Version 1.0.0 (since SoSe15)<br>Person responsible for module: Prof. Dr. Dirk Volkmer                                                                 |                                                                                             |                                                  |  |  |
| Contents:<br>According to chosen topic                                                                                                                |                                                                                             |                                                  |  |  |
| <b>Remarks:</b><br>The master's thesis will be offered in \$                                                                                          | SoSe 2020 as soon as the current situation                                                  | on allows.                                       |  |  |
| COMPULSORY MODULE                                                                                                                                     |                                                                                             |                                                  |  |  |
| Workload:<br>Total: 780 h<br>260 h studying of course content using provided materials (self-study)<br>520 h lecture and exercise course (attendance) |                                                                                             |                                                  |  |  |
| <b>Conditions:</b><br>To begin with the Masterthesis students must have acquired 72 CP from<br>modules consisting of the modulgroups 1a - 5.          |                                                                                             | Credit Requirements:<br>written thesis           |  |  |
| Recommended: according to the respective advisor                                                                                                      |                                                                                             |                                                  |  |  |
| Frequency: each semester Siehe<br>Bemerkungen                                                                                                         | Recommended Semester:<br>from 4.                                                            | Minimal Duration of the Module:<br>1 semester[s] |  |  |
| Contact Hours:<br>1                                                                                                                                   | Repeat Exams Permitted:<br>according to the examination<br>regulations of the study program |                                                  |  |  |
| Parts of the Module                                                                                                                                   |                                                                                             |                                                  |  |  |
| Part of the Module: Masterthesis<br>Language: English                                                                                                 |                                                                                             |                                                  |  |  |
| Learning Outcome:<br>see description of module                                                                                                        |                                                                                             |                                                  |  |  |
| Contents:                                                                                                                                             |                                                                                             |                                                  |  |  |

see description of module

| Examination                |  |
|----------------------------|--|
| Masterthesis               |  |
| Master's thesis, graded    |  |
| Examination Prerequisites: |  |
| Masterthesis               |  |

| Module PHM-0170: Colloquium                                                                                     |                                                                                             | 4 ECTS/LP                                        |  |  |
|-----------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|--------------------------------------------------|--|--|
| Version 1.0.0 (since SoSe15)<br>Person responsible for module: Prof. Dr. Dirk Volkmer                           |                                                                                             |                                                  |  |  |
| Contents:<br>According to the respective Masterthes                                                             | is                                                                                          |                                                  |  |  |
| <b>Remarks:</b><br>The Colloquium will be offered in SoSe                                                       | 2020 as soon as the current situation a                                                     | llows.                                           |  |  |
| COMPULSORY MODULE                                                                                               |                                                                                             |                                                  |  |  |
| Workload:<br>Total: 120 h<br>40 h studying of course content using p<br>80 h lecture and exercise course (atter | provided materials (self-study)<br>dance)                                                   |                                                  |  |  |
| Conditions:<br>submission of the masterthesis                                                                   |                                                                                             |                                                  |  |  |
| Frequency: each semester Siehe<br>Bemerkungen                                                                   | Recommended Semester:<br>from 4.                                                            | Minimal Duration of the Module:<br>1 semester[s] |  |  |
| Contact Hours:<br>1                                                                                             | Repeat Exams Permitted:<br>according to the examination<br>regulations of the study program |                                                  |  |  |
| Parts of the Module                                                                                             |                                                                                             |                                                  |  |  |
| Part of the Module: Colloquium<br>Language: English                                                             |                                                                                             |                                                  |  |  |
| Learning Outcome:<br>see description of module                                                                  |                                                                                             |                                                  |  |  |
| Contents:<br>see description of module                                                                          |                                                                                             |                                                  |  |  |
| Assigned Courses:                                                                                               |                                                                                             |                                                  |  |  |
| Masterarbeits-Seminar (seminar)                                                                                 |                                                                                             |                                                  |  |  |
| Examination<br>Colloquium<br>seminar / length of examination: 20                                                | minutes, graded                                                                             |                                                  |  |  |

Colloquium